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Executive Summary 

We introduce a generic description of MILS systems (Chapter 2), and the MILS 
architecture template (Chapter 3). Chapter 4 discusses MILS main components. The 
practical aim of this document is two-fold: (1) to get a common understanding of MILS 
terms and definitions, and (2) to provide a framework to derive the information flow, access 
control and resource allocation of the demonstrators from individual MILS components. 
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Chapter 1 Introduction 

EURO-MILS claims that “the project's cornerstone is MILS (Multiple Independent 
Levels of Security), a high-assurance security architecture that supports the 
coexistence of untrusted and trusted components, based on verifiable separation 
mechanisms and controlled information flow” [Cordis12]. While MILS is well 
established in practice, and products claiming MILS compliance do exist since the 
mid 2000s, it so far has not been standardized or given a formal definition, in 
particular “there is no standard that defines which functionalities reside in a MILS-
compliant system and how a MILS kernel should be designed.” [DPF09, p. 4]. 

In the absence of such a standard, to reflect meaningfully MILS, a common 
understanding of some terms related to “architecture” is helpful. We introduce a 
generic description of MILS systems (Chapter 2), and the MILS architecture template 
(Chapter 3). Chapter 4 discusses MILS main components.  
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Chapter 2 MILS concepts and state of the art 

In publications on MILS such as [AFHOT06] reference is made to high-assurance 
safety (in particular avionics) and high-assurance security. We briefly recapitulate 
both backgrounds, based on well available material, without claiming to completely 
cover each development until the present. We also introduce certification and 
architectural decomposition and modelling aspects of MILS. 

2.1 Modular high-assurance safety in avionics 

Safety assurance levels: [ARP4754] introduces a notion of safety assurance levels: if 
the failure of an application would have an impact that causes severe damage (e.g. 
loss of aircraft), the application is of a high assurance level. Otherwise, if the failure of 
an application would have an impact that causes a minor nuisance (e.g. loss of 
passenger entertainment system), the application is of a low assurance level. 
Applications at a high safety assurance level have stronger process requirements 
(planning, development, verification) than applications at a low safety assurance. 

IMA: Integrated Modular Avionics (IMA) is an architectural concept for modular 
avionics software systems that has been inspired from previous architectural 
concepts for physically modular hardware systems that consisted of LRUs (Line 
Replacement Units). IMA replaces multiple instances of separate and dissimilar 
LRUs with fewer common processing modules, and provides shared power supplies, 
housing and communication links. IMA decomposes an IMA system into (1) an IMA 
platform consisting of hardware and core software doing resource management and 
process scheduling, and (2) IMA applications, which are software components 
interacting with the IMA platform. 

IMA systems are designed to host several applications with appropriate isolation on a 
set of shared hardware and software resources. In IMA, applications execute in an 
environment generally called a set of partitions. A partition is a unit of separation 
regarding resource (i.e., CPU, memory, etc.) allocation in space and time domains. 
The IMA architecture dictates the underlying operating system (OS) to be developed 
for hard real-time, safety critical avionics applications. One of the functional 
requirements applied to such an OS is to host multiple independent aircraft 
applications while the computing platform shall not introduce significant common 
failure modes between those applications; evidences of the mechanisms providing 
isolation between those applications shall be demonstrated. One upside is that this 
enables incremental qualification, under which one application can be upgraded 
without requiring the others to undergo new certification. 

IMA-related standards include a common interface for applications [ARINC653], and 
guidance for the development and certification of systems [DO-297]. 

[ARINC653] requires an operating system to manage partitions and a rich set of 
interfaces to manage their inter-partition communication, periodic assignment of CPU 
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time to a partition, applications (“processes”) within a partition, memory allocation, 
and a health monitor responsible for reporting hardware, operating system software 
and application failures. [ARINC653] provides implementable interfaces for the 
above-mentioned functionalities (e.g., parameters and return values including error 
codes are defined). 

Processes for the system development, certification planning, requirements 
determination, safety assessment, implementation verification and process 
assurance have been developed for complex integrated systems in avionics in 
general [ARP4754]. Similarly, [DO-297] describes the IMA-specific aspects of design 
assurance for all parties involved in development, integration, verification and 
validation of IMA systems. As considerations of the IMA platform, [DO-297, p. 11] 
lists availability (functional performance and resource management, health 
monitoring), integrity (including protection features, fault detection and partitioning), 
safety (appropriate architecture and design assurance), fault management and 
composability. [DO-297, p. 14] defines the aim of “robust partitioning” to provide an 
equivalent level of functional isolation and independence as a federated system 
implementation. A partitioning analysis demonstrates that “no application or sub-
function in a partition could affect the behaviour of a sub-function or application in 
another partition in an adverse manner”. [DO-297] splits validation, verification, 
configuration management and certification processes into tasks done at the 
application level, the platform level, and the system level. 

IMA design is made to provide high-assurance safety systems for avionic industry. 
However, IMA requirements and development do not include security aspects, only 
random hardware faults and involuntary design errors are considered without taking 
into account failures due to malicious actions. 

2.2 Modular high-assurance computer security 

Security assurance levels: In computer security, the Common Criteria for Information 
Technology Security (CC, [CC12]) standard states that owners of assets (something 
valuable, e.g. a component in an aircraft or important data) place value on the assets. 
The risk of a threat to an asset “depends on the likelihood of the threat being realised 
and the impact on the assets when that threat is realised” [CC12, Part 1, p. 39]. 
Similar to the concept of safety assurance levels, an application which, under attack, 
impairs assets of high value (e.g., confidentiality of top secret data, integrity of a 
critical system) needs to provide a high security assurance and an application which, 
under attack, impairs assets only of low value needs to provide a low security 
assurance. Security assurance levels for individual components are especially used 
for standards that typically analyze distributed systems such as [ARINC811] for 
avionics and [ISA62443] for industrial automation. 

Evaluation assurance levels: However, there is an additional difference in computer 
security versus safety: safety assurance usually considers probabilities of faults (e.g., 
ARP 4761, ISO-26262), and in systems, combined and dependent probabilities (e.g. 
“fault tree analysis”). In computer security, security risks are more “all or nothing”: for 
example, once an attacker knows that access to an asset is possible by exploiting 
two weaknesses successively, he/she will perform those actions in the required 
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order. In particular this also holds if a larger system is incorrectly specified, and 
exploits against the larger system can be derived simply by analysis of the 
specification. In [CC12, Part 1, p. 41] the sufficiency of the countermeasures against 
a threat is thus shown by analysis in a document (the “Security Target”), and the 
correctness of a product is shown by evaluation in a graded evaluation process. If a 
product has undergone an extensive evaluation process, it gets assigned a high 
evaluation assurance level (EAL). If a product only has undergone a more limited 
evaluation process, it gets assigned a low evaluation assurance level. 

Security policy and security policy levels: To build systems on consistent 
specifications, a security policy is imposed upon a system. A security policy often 
assigns security policy levels to elements of a system. A widely applied security 
policy for confidentiality was Bell-LaPadula that assigned to each component a label 
indicating a security level such as “public”, “classified”, “secret”, “top secret”, where 
“public” is less than “classified”, “classified” less than “secret” and “secret” less than 
“top secret”. On such a policy, each pair of components can be compared (a set with 
such features is also called a “total order”). It allows implementing schemes such as 
Bell-LaPadula, which (in simple terms) says that no-one is allowed to “read up” (read 
information of a higher security level than his/her classification) or to “write down” 
(write information to a lower security level than his/her classification). Bell-LaPadula 
was also chosen as the reference model for the Orange Book [Dod83]. Similarly, the 
Biba integrity policy can be seen as inverting the labels (“no write up”, “no read 
down”). 

Multi-level secure systems (MLS): An MLS system maintains multiple security policy 
levels at the same time, often by assigning security labels to its components and 
resources. Systems implementing the afore-mentioned Bell-LaPadula or Biba models 
have been called MLS systems [And08]. A broader definition of the term MLS will be 
discussed under “MLS versus MILS nowadays” below. 

Operating systems: Much early work in high-assurance modular computer security 
has been on secure operating systems [MP97]. The earliest uses of computers 
involved programs directly operating on hardware, addressing individual memory 
cells directly and exclusively using the entire hardware. However, maintainability 
concerns lead to the development of a more modular usage, by installing an 
operating system on the hardware. An operating system is a software system that (1) 
simplifies access to underlying hardware by providing appropriate abstractions to 
applications, (2) provides resource management (e.g. memory) and in particular is 
able to allocate CPU(s) to applications (scheduling). Operating systems also can 
provide networking or file system infrastructure to computers. 

Security kernels: Many secure operating systems have used security kernels [MP97]. 
Security kernels have a small implementation, and thus can be more easily reviewed 
than a complex operating system. Security kernels target integrity, availability, and 
(usually a lesser concern in safety) confidentiality of applications and data and 
impose a security policy on the system. Security kernels, for example Honeywell’s 
Scomp [Fr83], supporting a security policy with multiple security policy levels had 
usually been subsumed under “multi-level secure” (MLS) systems. 
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In a security kernel, applications that are running at a certain security policy level 
fixed for each application are called “single-level secure” (SLS). If multiple instance of 
one SLS implementation are deployed in a system while each of those instances 
processes a different security level it will lead to “multiple single-level secure” (MSLS) 
components. Applications may implement security policies on completely different 
features than security kernels, so policies provided by applications versus policies 
provided by the separation kernel cannot always be directly compared. However, an 
implicit requirement on security kernels is that their security assurance level is at 
least as high as or higher than the highest security assurance level found in any 
application.  

Classification of applications in a security kernel: Unless otherwise specified, the 
applications are SLS. Applications spanning multiple security policies are also MLS, 
such as a downgrader. For a collection of classifications, see Table 1. The underlying 
idea of such classification is that, from an information flow policy and resource 
sharing viewpoint only MSLS and MLS components need to be verified [AFHOT06]. 

SLS: Single-Level 
Secure Components 
[Alv98, AFHOT06, 
ZAV06] 

A Single Level Secure Component is a component that every 
time processes data of one security level. 

MSLS: Multiple 
Single-Level Secure 
Component 
[AFHOT06, ZAV06] 

A Multiple Single-Level Secure Component is a special kind 
of SLS component that processes data of multiple security 
levels, but always maintains separations between classes of 
data by exclusively processing only one security level during 
its runtime instance. For example this separation can be 
implemented by allowing access to a different security level 
only when the component has rebooted with different 
parameters. Also deploying multiple instances of one SLS 
component processing different single security levels turn this 
SLS component into an MSLS component. 

Note: in [Alv98] this was restricted to temporal separation, “at 
a single time-point, only handles information from one 
component”. If such a single-level process is to be 
implemented as untrusted process [Alv98], it can be 
supplemented by an appropriate labelling and filtering of 
messages. Moreover, in [Alv98] SLS and MSLS are 
subsumed under “secure single-level process”. 

MLS: Multi-Level 
Secure Component 
[Alv98, AFHOT06, 
ZAV06] 

A Multi-Level Secure Component is a component that 
handles information of with different security levels 
concurrently during one runtime instance. An example of an 
MLS component is a separation kernel [MPT+12] or a 
downgrader [ZAV06]. 

Table 1: Levels of components 
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Multiple independent levels of security (MILS): Encoding rich functionality into a 
central component raises the question of how to design a security kernel that is itself 
secure. Therefore, the functionality of security kernels has been broken up into a 
more structured design. To differentiate such systems from “MLS” systems, the term 
“MILS” (multiple independent levels of security) has been introduced. It describes 
systems where different partitions hosting applications are either independent from 
each other or connected by communication channels without an explicit hierarchical 
ordering policy that would require attaching global security policy levels to each 
partition. 

The MILS architecture approach was popularized by John Rushby in 1981 ([Rus81], 
“Design and Verification of Secure Systems”; at that time, Rushby did not use the 
term MILS), which started a formalisation of MILS concepts. In his approach, the 
system is designed as a distributed one and is based on a special kind of operating 
system using a separation kernel (SK). He proposed that the security should be 
achieved partly through physical separation, partly through the use of components 
and partly through trusted functionalities performed within some components. The 
purpose of the separation kernel is to allow such a “distributed” system to run within a 
single processor. This is achieved by offering a very strong separation between the 
different partitions except for very carefully controlled information flow between them. 

The basic idea of MILS is to make the security-critical part of the system (i.e., SK) 
small enough and with specific functionality so it can be certified at high assurance 
levels. Traditional operating system services like device drivers, file system, etc. are 
pulled out of the separation kernel and run in non-privileged mode; the only part of 
the MILS system running in privileged mode is the SK. Safety and security policies 
must be enforced at each level: by the separation kernel and by any other 
component needed by the applications hosted in the partitions, but also by the 
applications themselves. A key MILS objective is to enable the evaluation and 
certification of a complex system to be modularized into a number of independent, 
small evaluations. 

MILS separation kernel security assurance characteristics: In practice, MILS 
principles largely match the requirements imposed by users and producers of IMA 
systems who, in addition to their IMA safety requirements, had an additional need for 
security requirements. 

In the MILS literature, explicit concerns for security assurance have been formulated 
as “NEAT” [BBH+05, KW08, UV05], as follows: 

 Non-bypassable: Policy enforcement functions cannot be circumvented. 

 Evaluatable: Policy enforcement functions are small enough and simple 

enough that proof of correctness is practical and affordable. 

 Always Invoked: Policy enforcement functions are invoked each and every 

time. 

 Tamperproof: Policy enforcement functions and the data that configures them 

cannot be modified without authorization. 

Similar definitions exist elsewhere, e.g. “evaluatable”, “always invoked”, 

“tamperproof” for reference monitors in [And72, p. 22]. 



 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 7 of 63 

Objectives and threats in MILS systems: In computer security, a threat is 
characterized by some adverse action achieved by an attacker who attacks system 
assets. The objectives of computer security are to counter threats in order to mitigate 
the risk of a threat scenario. 

Assets for MILS system and its components can be formulated in a straightforward 

way: 

 for each component itself,  

o with the objectives of the preservation of its confidentiality, integrity, and 

(possibly) availability, 

 for each resource the component uses,  

o with the objectives of the preservation of its confidentiality, integrity, and 

(possibly) availability. 

Threats can be named against the preservation of each the security attributes: 

 for confidentiality, the threat is disclosure, 

 for integrity, the threat is modification, 

 for availability, the threat is depletion. 

MLS versus MILS nowadays: Earlier in this section (“Multi-level secure systems 

(MLS)”) a strict hierarchically ordered security policy based on security policy levels 

had been discussed in the context of MLS. One insight gained by the MILS approach 

was that several components on the same platform have safety and security 

requirements that are just “different” in a wider sense. This insight had led to (1) 

applying the term MLS also in that wider sense [DCS+04, LRP+11], and (2) to use 

MILS to describe an architectural decomposition approach of an MLS system into 

components [Alv98, AFHOT06, ZAF08]. For the rest of this document we use the 

term MLS for systems based in the wider sense (1) and MILS for the architectural 

decomposition approach (2). 

2.3 Certification aspects 

For IMA, DO-297 describes how to perform incremental certification [DO-297, WP08]. 
A case study on compositional certification of a system built on a separation kernel 
using Common Criteria approach is given in [MPS+12]. 

The Open Group plans to develop a catalogue of components under the “Mils(TM)” 
(this spelling) trademark that are backed by an Open Group Mils protection profile. 
[RD07, Del10] list protection profiles for MILS components such as console system, a 
network system and a file system, and suggest to specify the allocation of trust of 
specific MILS components to a MILS Integration Protection Profile (MIPP); however, 
these PPs are in draft form and are not public.  

[SKPP] was a protection profile for separation kernels running on hardware. 
Successful certification was achieved for the Green Hills Integrity system running on 
PowerPC 750CXe PCI extension card [Gre08]. However, [SKPP] has been retracted 
(“sunsetted”) by NSA in September 2011. The published rationale for the sunsetting 
includes the considerations (1) that the NSA “will focus on specific government 
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systems using separation kernels rather than general OS evaluation” [Wis11], and 
points [Hou11] to that (2) in the project “one box one wire” (OB1) “the underlying 
commodity workstation (as part of a separation platform) does not appear to be 
appropriate for SKPP certification due to its complexity” and that “the problem with 
commodity desktop platforms comes down to the fact that too many developers and 
vendors are interdependent” [SNAC10]. In balance, in the same document, it is 
pointed out that “commodity workstations may present a completely acceptable risk 
profile given available options” and the “findings in this document do not condemn 
OB1 or the use of separation kernels in commodity workstations”, [SNAC10, also 
discussed in NG12]. Note: concerning (1), this policy change does not apply to 
Europe, concerning (2), our certification approach for the separation kernel 
component does not include the hardware. That is, we assume that either the 
hardware has been certified by the CC, or it is trusted to be reliable for other reasons, 
e.g. by evidence from the hardware vendor that the hardware is suitable for the 
security-critical purpose intended.  

For partitioning communications systems (PCS), a protection profile draft exists 
[Uch05] (available on demand from the author) which extends the PIFP (partitioned 
information flow policy) from [SKPP] to distributed environments. The High 
Assurance Security Kernel protection profile [HASK] also addresses distributed 
communication systems in the style of a PCS. 

2.4 Architectural decomposition and modelling 

Since a long time research on security software architecture has emphasized 
principles that also can be found in MILS systems. For example, discussing 
mechanisms and techniques that define who may use or modify the information 
stored in a computer, Saltzer and Schroeder have pointed out that the design shall 
be kept “as simple and small as possible” [SS75, p. 1282], that “every access to 
every object” shall be checked and that the design shall be open (not secret). As they 
are widely known, we will revisit the [SS75] design principles and the extent to which 
they are fulfilled later (in Section 5.2). 

In the context of general research on software architecture, the MILS approach with 
its strong emphasis on how a system is composed would subsumed under a 
structural model which is characterized by components, connectors and additional 
constraints [BCK03, SG95, ZAF06, ZAF08]. A MILS channel is a “connector” and the 
additional constraint on the system (“other stuff” in [SG95]) is non-interference. For 
component-connector type systems, [CBB+03, Section 4.7] proposes documentation 
in the form of either Architecture Description Languages or UML. If UML is used, 
[CBB+03, Section 4.7] discusses how to represent components and connectors in 
UML and note that connectors can be either expressed as dependencies between a 
component, and the ports/interfaces realized by the component or as components 
themselves (p. 162). [ZAF06, ZAF08] discuss decomposition patterns for 
components such as “product pattern”, “cascade pattern”, “feedback pattern” and 
several instances of “aggregation patterns”. 

The secure refinement of a downgrader with regards to information flow properties is 
demonstrated by a paper-and-pencil argument in [CVdM09]. 
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MILS architectures have been expressed in Architecture Analysis and Design 
Language (AADL), verified by the REAL tool [GH08], and then been used for code 
generation by [DPK10]. MILS components have been expressed in the LOTOS 
language by [Alv98]. In [BBH+05], boundary flow modelling and secure UML are 
listed as possible support to the system integrator. The software engineering tool 
Specware for the breakup of a system has been used by [MWTG00]. [Cof11] 
discusses identification of architecture design patterns on an IMA system. 
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Chapter 3 MILS representation adopted by 

EURO-MILS 

This chapter presents the EURO-MILS project view of a MILS architecture template 
using a top-down approach (Section 3.1), followed by a bottom-up approach giving 
definitions of terms considered useful to describe the MILS architecture template 
(Section 3.2). We conclude this chapter with an example (Section 3.3). 

3.1 MILS architecture template 

Figure 1 presents a high-level view of a MILS architecture template. This is the 
template we adopt in the EURO-MILS project. The term “MILS architecture template” 
names a template encompassing many possible MILS systems, whereas the term 
“MILS architecture” (without “template”) refers to the architecture of the 
implementation of a concrete MILS system. 

From the outside (i.e., external world, which could be a larger system comprising the 
MILS system), the MILS system is seen as a system that handles information from 
multiple components with different security and safety levels concurrently, in other 
words, an MLS system. The MILS system’s internal architecture is not visible from 
the point of view of the infrastructure around the MILS system (it is like a black box). 

Thus, a MILS system can be used as a base to build a system that has different 
safety/security requirements for different components, called an MLS system. 

In the rest of the section, we are discussing in more details each part shown in Figure 
1. 
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Figure 1: MILS architecture template (components in dashed lines are optional). 

3.1.1 MILS system 

We define a MILS system as a system where its MILS architecture is visible to the 
person composing the MILS system from its components, i.e., the system integrator. 

A MILS system consists of components interacting with each other. We define three 
main components in a MILS system: 

 MILS core (Section 3.1.2) 

 MILS platform (Section 3.1.3) 

 Partition (Section 3.1.4) 



 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 12 of 63 

3.1.2 MILS core 

 

Figure 2: MILS architecture template: MILS core 

The only goal of the MILS core is to provide separated partitions with controlled 
information flow between them. Thus, the MILS core provides the primary security 
functionality of a MILS system. The MILS core (Figure 2) consists of components that 
implement and enforce the separation both in space and time: separation-supporting 
hardware and the separation kernel. Depending on use-case implementation, the 
MILS core may also include hardware critical devices and software for these 
hardware devices. 

 Separation-supporting hardware. 

This hardware consists of implementation (gates in silicon) and 
configuration/initialization. 

The hardware shall support separation, e.g. CPU with different privilege modes, 
MMU, memory bus, IOMMU. Hardware consists of interconnected components. A 
hardware component’s interactions with other hardware components can be 
restrained by a guard. For example 

o Let’s consider a CPU, memory, and MMU. Assume the CPU is working in a 
user mode. In this mode, the CPU can only access memory if the access 
has been permitted by the MMU. Thus, the MMU is the guard for the CPU. 

o Let’s consider a device, memory, and IOMMU. Assume the device 
accesses memory as a DMA. In this case, DMA access will happen only if 
the IOMMU permits it. Thus, the IOMMU is the guard for this device. 

Configuration/initialization is software that performs hardware-specific initialization 
and configuration of hardware, e.g. firmware and/or bootloader and/or stand-
alone software. 

 Separation kernel. 

The separation kernel guarantees separation and controlled information flow by 
enforcing the security policy. 

Examples of enforced security polices are 

o resource allocation policy (e.g. allocation of CPU time and memory to 
partitions), 
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o access control policy (e.g. access rights to objects under control of 
separation kernels), 

o information flow policy (e.g. communication rights of partitions). 

Separation kernel functionality relies on the hardware supporting functionality. 

A separation kernel may further configure hardware with the respect to a given 
security policy. For example, it configures guards, creates page tables and sets 
MMUs. 

 Critical hardware parts/devices. 

These devices can bypass the enforcement mechanisms of the separation kernel. 
For example, DMA capable devices without guards (i.e. without IOMMU) can 
bypass the separation kernel. To have such critical devices is optional. However, 
if such device is present, its associated software acting as a guard for it must be 
also present in the architecture. 

 Software for critical hardware parts/devices.  

This software is the guard for a critical device. It provides an API to partitions to 
work with the device. Therefore, this software implements and enforces part of the 
separation. We assume that if the software correctly works with the device, the 
device will not bypass the separation kernel security policies. 

3.1.3 MILS platform 

 

Figure 3: MILS architecture template: MILS platform 

The MILS platform (Figure 3) consists of the MILS core and optional software and/or 
hardware components that provide secondary security functionalities and do not 
contribute to the enforcing of separation. These are security services that can be 
used based on the use-case needs. 

These optional components are part of the platform because they  

 contribute to the system security, however, they do not enforce separation 
between partitions, 

 can be used by several partitions, 

 may be realized by different implementations for a given optional security service 
(use-case dependent), 
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 might need a tighter integration with separation kernel or hardware.  

Examples of such optional components are: 

o security audit (Section 3.1.5), 

o crypto functionality shared between partitions, 

o software implementing virtualization of devices (e.g., multiplexing of 
accesses for the network interface, shared graphics or shared audio). 

3.1.4 Partition 

A partition is a unit of the separation created by the MILS core. A partition will get 
resources as specified in a security policy and enforced by the MILS core. A partition 
is a container that hosts executable and/or non-executable data. An executable in the 
partition can use allocated resources, communicate with the MILS core, and 
communicate with other partitions under control of the MILS core if such 
communication is explicitly allowed by the security policy. 

Partitions also may include hardware that is not separation-relevant. For example, an 
FPGA doing cryptography can be under full control of a single partition. 

3.1.5 Security audit 

Security audit, if it exists, is part of the MILS platform. Security audit is the trustworthy 
gathering of audit records. The audit records can be generated by the MILS core 
components or applications hosted by partitions. 

A security audit component processes incoming data by adding trustworthy security 
related information such as time stamps and source of audit record. It can be local 
and managed by the audit component but also exported to an external media, this 
aspect being use-case implementation dependent. 
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3.1.6 Middleware 

 

Figure 4: MILS architecture template with middleware: components in dashed lines are optional. 

The term middleware is generally not well defined and its meaning always depends 
on the context. 

We define middleware as a set of services that are used by several partitions. 
Middleware does not contribute to the separation enforced by the MILS platform and 
is itself under control of the MILS platform, thus it is a unit (a partition) under control 
of the separation kernel. The system integrator of a MILS platform for a MILS system 
can decide to have middleware or not. Middleware can be a partition providing some 
functionality for several other partitions or be a part of a partition (e.g. libraries, run-
time environments guest operating systems). For instance, the habitat of middleware 
is also restricted to be within a partition in [Win13, p. 3, Figure 2]. 

By introducing the concept of the middleware, we acknowledge that it can be useful 
to express that some partitions can be part of a bigger function (see Figure 4), and 
thus, need common infrastructure, which is not related to the MILS core or the MILS 
platform. In the generic MILS architecture template, we agreed to not use the term 
middleware to avoid any misunderstanding because it depends on the use-case 
where a MILS system is employed. 
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3.2 MILS terminology 

3.2.1 Component 

A component is a term to describe the decomposition of a (in general, any) system 
into meaningful self-contained parts. For example, a (yet to be defined) MILS system 
consists of components. In general, components may be implemented by (1) 
hardware, (2) software, or (3) a combination of hardware and software [CBB+03, DO-
297]. A component provides a given functionality that can be configured according to 
a given use-case. 

3.2.2 Resource 

A resource is anything (processor such as a CPU or a processing core, memory, 
software, data, network, etc.) internally used or exported by a component. A resource 
may be physical (a hardware device) or logical (a piece of information). A resource 
may be shared by multiple components or be dedicated to a specific component. 

Exported resources are those resources to which an explicit reference is possible via 
a component interface, e.g., the programming or configuration interface. Internal 
resources are those resources used exclusively by the component, and which have 
no explicit reference via a component interface. 

For example, internal resources of an operating system usually comprise physical 
memory space, I/O memory space, the set of processors the applications can run on, 
allocated processor time for each processor (at least, when the operating system is a 
real-time operating system), and interrupts. A resource commonly exported by an 
operating system is a “file”. The operating system enforces an access control policy 
on the file. Internally, it uses memory to export the file. Another exported resource 
exported by an operating system is time slices, and the operating system enforces a 
scheduling policy (a resource management policy). Internally, the operating system 
uses CPU time that itself has access to. 

3.2.3 Communication object 

A communication object is an exported resource provided by a component. It can be 
shared between components. Communication objects are used by components to 
communicate between them. 

3.2.4 Security policy 

A security policy is a set of rules to be enforced by a component. Examples of 
security policies are: 

- Resource allocation policy (Section 3.2.5) 

- Access control policy (Section 3.2.6) 

- Information flow policy (Section 3.2.7) 

In our context, all three policies describe rules for granting or denying some 
“treatment” of exported resources, with “treatment” of a resource standing for to be 
able to eventually “read”, “write”, or “execute” the exported resource. The distinction 
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between the resource allocation policy and the access control policy is which 
interface the rules for access are applied on.  

The term information flow policy has more than one usage, the most simple one is to 
use it as an umbrella term for “access control policy” and “resource allocation policy” 
combined. For most components, in the scope of this document, we adopt this simple 
interpretation, making these three security policies closely related. We decided not to 
merge the three policies in order to allow a precise characterization of components 
where needed later. Moreover, a more “complicated” usage of the term “information 
flow policy” will be encountered when the separation kernel is described (Section 
3.2.13). 

An operation might be governed by several policies: we consider both operations of 
“opening a file” and “reading/writing” to be involving access control to the file, 
however, the operation, depending on the implementation, could also be governed by 
a “resource allocation policy” such as the exclusive ownership of memory for the file 
descriptor to the component opening it. Similarly, the virtualization of a network 
component could comprise “access control” to Single Root I/O virtual functions and 
“resource allocation” if some of the virtual functions, after proper reinitialization, are 
assigned to different components during different periods of a time cycle (say 20 
milliseconds each 100 milliseconds). 

Note: We have observed that making the distinction between resource allocation 
policy and access control policy mixes concerns of interface (functional requirements) 
into policy requirements. However, the interface available to an attacker defines the 
possible malicious operations of the attacker. Thus, making the distinction allows to 
differentiate attacks based on resource depletion (attacking the resource allocation 
policy defined below) and attacks against confidentiality/integrity of the resources 
(attacks against the access control policy defined below). 

A security policy can be dependent on system state, yet be bounded. For example, 
writing to a file may depend on that, statically, access to the file is allowed, and that, 
dynamically, a file descriptor is available after “opening” the file. Sometimes, in a 
usage that, after discussion, we do not follow in this document, the term “resource 
allocation” is used for initial establishment of a dynamic state, e.g. “opening a file” 
would be considered “resource allocation”, whereas “reading/writing” the file would be 
governed by access control. For this document, as outlined above, we consider both 
operations of “opening a file” and “reading/writing” to be involving access control to 
the file.  

When describing the protection of assets in the system, one can assume that every 
action that is eventually possible by configuration will be used by an attacker, even if 
some initialization of the state is needed. Thus, the static configuration describes a 
bound for the behaviour that is dynamically possible. Section 4.3 further discusses 
system configuration. 

3.2.5 Resource allocation policy 

A component’s resource allocation policy acts on the component’s interface used to 
manage exported resources. This interface is characterized by that a request for a 
resource is made without knowing in advance how the resource is “named” or 
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“addressed”. The request is made for a quantity of the resource, and then the 
component decides whether to grant or deny the request to export that resource in 
the desired quantity. The resource allocation policy defines which of the component’s 
resources are kept internal to the component and which are exported to which other 
components. When a resource is exported to more than one other component, the 
resource is shared. A resource allocation policy can be in the “space” domain, when 
resources can be used simultaneously but are kept in different spatial (e.g. memory) 
locations or in the “time” domain, where resources are used sequentially, but kept in 
different time slices. An example for resource allocation in the “time” domain is the 
allocation of a CPU to a component for a limited period of time. 

3.2.6 Access control policy 

A component’s access control policy acts on the component’s interface used to 
manage exported resources. In this respect it is identical to the aforementioned 
resource allocation policy (Section 3.2.5). However, the interface is characterized by 
that a request to the resource includes an explicit reference to the resource (e.g. the 
resource’s name or a numerical identifier). Identically to the aforementioned resource 
allocation policy (Section 3.2.5), the access control policy defines which of the 
component’s resources are kept internal to the component and which are exported to 
which other components. When a resource is exported to more than one other 
component, the resource is shared. The access control policy is in the “space” 
domain. 

Note: as observed in Section 3.2.4, the resource allocation policy (Section 3.2.5) and 
the access control policy (this section) differ in the interface offered on the exported 
resources and they differ in the threats (exhaustion versus violation of 
integrity/confidentiality). For resource sharing, the threats a shared resource is 
exposed to are different: a resource shared under a resource allocation policy, e.g. a 
memory allocator that can be used by different components, can be exhausted 
(“denial of service”), but a resource shared by an access control policy, e.g. a piece 
of memory at a fixed address that is marked as accessible to several components, 
cannot. 

3.2.7 Information flow policy 

The term information flow policy has more than one usage,  

(1) the most simple one is to use it as an umbrella term for “access control 
policy” and “resource allocation policy” combined or  

(2) to express policies where pieces of information (messages) are written to 
one or several communication objects(s) by a sender and subsequently these 
messages are read from the communication object(s) by a receiver. Such 
policies may include rules based  

(2a) on the sender/receiver of the messages and/or  

(2b) on the content of these messages.  

Note: for most components, interpretation (1) is used. (2a) will be used in the context 
of a separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of 
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security gateway (discussed as an example in Section 3.3). An information flow 
policy in the sense of (2a) is either explicit, based on identities of components 
between which information flow is allowed, or implicit, as unambiguously defined by 
the resource allocation policy and access control policy. 

3.2.8 Configuration 

The configuration of a component contains the component’s identity, and it defines 
any security policy (access control policy, resource allocation policy, information flow 
policy) enforced by the component. An information flow policy configuration also may 
be implicitly configured by resource allocation policy configuration and access control 
policy configuration. 

3.2.9 Application 

An application is one or more executable(s). 

3.2.10 Domain 

A domain (or “security domain”) is a unit of separation created and maintained by any 
MILS component, for example by an application (Section 3.2.9), a function (Section 
3.2.12), or the MILS core (Section 3.2.14), which is enforcing a security policy on 
exported resources.  

In particular, a domain is a “space” domain, if exported resources can be used 
simultaneously but are kept in different spatial (e.g. memory) locations. A domain is a 
“time” domain, if exported resources are used sequentially, but kept in different time 
slices. 

3.2.11 Partition 

A partition is a component that serves to encapsulate application(s) and/or data. 
Thus, the content of a partition is application(s) and possibly other data. A partition is 
a unit of separation with respect to 

 resource allocation in the space and time domains, 

 an access control policy and an information flow policy in the space domain. 

In a MILS system, partitions are created and maintained by the MILS core (see 
definitions below) based on security policies defined for a given use-case. 

Note: this bottom-up definition of a partition has a different emphasis than the 
previous top-down characterization given in Section 3.1.4, but does not contradict it.  

A partition is a domain, but a domain is not necessarily a partition. 

3.2.12 Function 

A function is a logical group of partitions for achieving common objectives. The 
implied partitions may be connected using information flows. 
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3.2.13 Separation kernel 

A separation kernel is a component that enforces a resource allocation policy and an 
access control policy on its exported resources (partition, resources allocated to a 
partition, communication objects). Communication objects allow for controlled 
information flow between partitions. A separation kernel may have an explicit or an 
implicit information flow policy on its partitions (see definition of information flow 
policy for details). 

The separation kernel uses separation-supporting hardware to provide the separation 
between partitions in a MILS core. 

Examples: 

 A resource allocation policy might assign a certain amount of time, for 
example 20 milliseconds periodically every 100 milliseconds, of the 
resource CPU access to a certain partition, for example partition number 5.  

 An access control policy might assign communication object C as writable 
to partition A and readable to partition B, defining an implicit information 
flow policy from A to B. 

 An explicit information flow policy for a separation kernel could consist of 
the specification that only partition P via whatever interface may send 
information to partition Q. 

3.2.14 MILS core 

By MILS core we refer to the minimal set of components needed for separation of 
partitions on a MILS platform. The only goal of the MILS core is to provide separated 
partitions with controlled information flow between them. Thus, the MILS core 
provides the primary security functionality of a MILS system. The MILS core (Figure 
2) consists of components that implement and enforce the separation both in space 
and time. 

3.2.15 MILS platform 

A MILS platform consists of the MILS core and optional software and/or hardware 
components that provide secondary security functionalities and do not contribute to 
the enforcing of separation. 

3.2.16 MILS system 

A MILS system is a concrete deployment of a MILS platform with a defined set of 
partitions. 

3.2.17 MLS system 

An MLS system is a system with different security requirements for different 
components. It can be implemented by a MILS system. 
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3.2.18 Terminology rationale 

The term component is a standard term for the description of software architectures 
(see also Section 2.4). On what can be a component we note that some 
presentations of MILS systems such as [UV05] come with a fixed number of layers. 
Others argue that, in principle, components themselves can contain MILS systems, 
allowing recursive compositions [Del12a, p. 56]. 

Resource: In software interface documentation, when specifying a component, we 
can describe what resources the component provides and what resources the 
component uses [CBB+03, p. 229]. In [SKPP, p. 21] resources that are provided by 
the component are called “external resources” whereas resources that are required 
by the component are called “internal resources”. From a resource usage 
perspective, resources can either be hardware or resources provided by other 
components as in [Tan07, p. 432] where “a resource can be a hardware device (e.g. 
tape drive) or a piece of information (e.g. a locked record in a database)” or “Any 
element of a data processing system needed to perform required operations; for 
example: storage devices, input/output units, one or more processing units, data files, 
and programs.” [ANS01]. The use of “resource” for describing hardware is also 
established in virtualization [PG74]. We have not found a stand-alone definition of the 
term “resource” in the MILS literature, but for separation kernels the hardware notion 
it appears close to [AFHOT06, p. 3] where the term is not explicitly defined. In the 
context of a description of a separation kernel, the term “shared resources” is 
expanded to “microprocessors, system registers etc.” whereas the “piece of 
information” aspect appears to be addressed in [Rus08a, p. 10]. 

In [Rus08a], our resource allocation policy, access control policy, and information 
flow policy are equated to a “resource sharing” + (information flow) “policy”. Also 
[SKPP] does not have any notion of an access control policy. We prefer to keep the 
three terms, because it simplifies mapping to [CC12], where the resource allocation 
policy can be mapped to the functional requirement class FRU_RSA, the access 
control policy can be mapped to FDP_ACF, and the information flow policy can be 
mapped to FDP_IFF. That resource sharing implies information flows and that 
conversely resource sharing analysis supports information flow analysis is widely 
accepted [Kem83, AFOB+12]. Resource allocation policies versus access control list-
based policies, e.g. the need to maintain resource exhaustion quantifiers to enforce 
resource allocation quotas, are discussed in [Ste91, p. 228]. 

Our definition of application is based on [ANS01]. It avoids any notion of user, as 
mentioning the term “user” at an early stage of the introduction could create the 
misunderstanding that users are limited to human beings using the system 
interactively. 

The use of the term domain for environments where a security policy is imposed by a 
component can be found, for example, in [Lam71]. The same paper also shows (p. 
428) examples for hardware-imposed domains (supervisor and software states) and 
software (user environments in an operating system). 

Our definition of partition is close to [AFHOT06, p. 2] where a partition is defined as 
“a collection of data objects, code and system resources”. [SKPP, p. 20] points out 
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that the term is motivated from its use in mathematics, where a partition of a set A is 
used to describe the split of a set into disjoint subsets, so that each element of A 
belongs to exactly one of the subsets. 

Our definition of function (logical group of partitions for achieving common objectives) 
is what in [DO-297] is called an application.  

MILS platform + partitions content = MILS system: this is emulated after IMA, where 
an IMA platform + partitions give an IMA system.  

MLS system: We identify a MLS system with a system having different security 
requirements for different components. In safety, the term “mixed criticality” is often 
used for this. As discussed in Section 2.2, historically, there exists also a more 
restrictive usage, where a MLS system has a transitive security policy [BDR+08]. In 
line with many others (e.g. [DCS+04, LRP+11]), we do not adopt that more strict 
definition. 

3.3 Example of a MILS system 

In this section the terminology of Section 3.2 is applied to a concrete MILS system 
described in [MPT+12]. The paper explains a gateway architecture implemented 
using the MILS principles for the purpose of controlling the content of the information 
flow between the hosted applications. Those applications process data of different 
security classification logically grouped into a green domain and a brown domain. As 
foundation, the gateway uses a separation kernel, which provides the functionality of 
partitioning and controlled non-bypassable information flow. Thus, the separation 
kernel applies a Resource Allocation Policy and maintains an Access Control Policy 
and a basic Information Flow Policy, defining the partitions that are allowed to 
communicate among each other. However, this Information Flow Policy of the 
separation kernel is not able to ensure additional constraints on content of the data 
that is transferred using the communication objects. The gateway enhances this 
Information Flow Policy by this capability using the available foundations. 

 

Figure 5: Gateway architecture of a MILS system [MPT+12, Figure 3]. 

 Applying a black-box view from the outside onto the system in Figure 5, the 
system appears as a MLS system, since it processes data belonging to the 
green domain and data belonging to the brown domain concurrently. 

 Having a closer look into the architecture of the system, the system is a MILS 
system, since it uses a MILS platform (the Separation Kernel-based Operating 
System) and partitions identified by the blue dotted lines in Figure 5. 

 The MILS platform comprises the Separation Kernel-based Operating System 
(the MILS core) plus the Auditing Module mentioned in [MPT+12, Section II.D]. 
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 The MILS core is the Separation Kernel-based Operation System [MPT+12, 
Section II.D] plus some unspecified hardware (that is not further described in 
[MPT+12]) but used and managed by this separation kernel. 

 As Separation Kernel the example uses PikeOS [MPT+12, Section II.D]. This 
separation kernel enforces the Resource Allocation Policy and Access Control 
Policy to form partitions (the blue dotted boxes) based on the available 
resources, such as memory, CPU cores and the program binaries. The 
separation kernel exports some of those resources for building communication 
objects. By controlling the accesses of the partitions to those exported 
resources the separation kernel creates and applies a basic Information Flow 
Policy. Examples for exported resources are: ARINC 653 ports or file 
providers [MPT+12, Section IV.C]. 

 Partitions are provided by the separation kernel. The gateway relies on this 
crucial element for implementing its function. 

 Within the partitions the example executes several Applications, which is the 
content of the six blue dotted boxes in Figure 5. The paper specifies 
applications running within the “Gateway Outbound Partition” and within the 
“Gateway Inbound Partition”. Other applications are the Brown Applications 
and Green Applications. 

 As components the modules of [MPT+12, Section IV.II], such as the modules 
with specific functionality for filtering packets (named “Viewer Module”), 
reading/writing filtered packets across partitions (“Border-crossing Module”) or 
making decisions on packet routing (“Routing Module”) can be identified. The 
paper does not explicitly identify hardware; however it is assumed that the 
system contains at least a CPU, which again is a (hardware) component. 

 The purpose of the gateway is to enhance the basic Information Flow Policy of 
the Separation Kernel by the ability of controlling the content of the information 
flow (unidirectionally) [MPT+12, Section IV.I] and [MPT+12, Section V]. For 
achieving this logical function, the gateway uses the collaboration of two 
partitions: the Gateway Outbound Partition and the Gateway Inbound Partition. 
Other functions are given by the applications located inside the two security 
domains, which “can comprise one or more partitions” [MPT+12, Section IV]. 
Functions are depicted as a black solid boxes in Figure 5. 

  The system contains configurations of different applications: 

o The configuration of the gateway for defining the enhanced Information 
Flow Policy.  

o The configuration of the separation kernel for defining the Resource 
Allocation Policy and the Access Control Policy for the gateway 
components [MPT+12, Section IV.II]. [MPT+12, Section IV.III] forces 
the system integration to provide “enough buffer space” for the exported 
communication objects. [MPT+12, Section IV.IV] discusses the 
scheduling configuration of the system. Non-bypassability of the 
gateway’s enhanced Information Flow Policy is ensured by the 
separation kernel. 
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Chapter 4 MILS main components 

The following characterization of components does not include all MILS components, 
but rather discusses the security properties of MILS components that are common to 
MILS platforms and occur frequently. We begin with software components (Section 
4.1), followed by hardware components (Section 4.2) and discuss the configuration of 
MILS systems (Section 4.3). 

4.1 Software components 

4.1.1 Separation kernel 

A concise characterization of a “separation kernel” already has been given in Section 
3.2.13. In this section, we look at the “separation kernel” as a MILS software 
component. 

4.1.1.1 Services 

4.1.1.1.1 Pictorial view 

 

Figure 6: Generic picture of a separation kernel with several partitions. 

The pictorial view is the most commonly found way to describe the services of a 
separation kernel. Figure 6 shows that each partition is under control of the 
separation kernel, in the sense that the separation kernel enforces the system 
configuration upon all their communication and resource requests in a non-
bypassable way, while it is not inspecting or protecting what happens within the 
partition itself. For example, if a partition is authorized to communicate over a 
network and to use the HTTP protocol, the SK will not protect the application against 
infection by a virus introduced into the HTTP payload. 
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4.1.1.1.2 Classical approach 

In some of the early work such as [BBH+05, UV05, AFHOT06] a strong emphasis on 
the implementation of information flow and its absence has been taken. 

“The only tasks assigned to a MILS separation kernel are the partitioning of 
processes and failure containment. Consequently, we can represent the safety and 
security requirements for a separation kernel by four simple foundational policies: 

• Data Isolation: Information in a partition is accessible only by code running in that 
partition. Private data remains private. 

• Control of Information Flow: Information flow among partitions is from an 
authenticated source to authenticated recipients. The source of information is 
authenticated to the recipient. Information goes only where intended. 

• Resource Sanitization: Usage of the microprocessor and other hardware, such as 
networking hardware, cannot be used as covert channels to leak information. 

• Fault Isolation: A failure in one partition is prohibited from cascading to any other 
partition. Failure detection, containment, and recovery are performed locally” [UV05]. 

Similar formulations are found in an early draft of an SKPP predecessor (defining 
“data isolation”, “control of information flow”, “resource sanitization”) [WOM02]. 

 

4.1.1.1.3 Policy-based description 

For convenience, we repeat our definition from Section 3.2.13. 

“A separation kernel is a component that enforces a resource allocation policy and an 
access control policy on its exported resources (partition, resources allocated to a 
partition, communication objects). Communication objects allow for controlled 
information flow between partitions. A separation kernel may have an explicit or an 
implicit information flow policy on its partitions (see definition of information flow 
policy for details). 

The separation kernel uses separation-supporting hardware to provide the separation 
between partitions in a MILS core.” 

We think this description with an emphasis on policies fits better in a systematic 
exposition. A description based on policies has also been adopted in the “MILS 
constitution” [Rus08a], another attempt to systematically explain MILS. 

This characterization is isomorphic to the characterization of Section 4.1.1.1.2: 
“resource sanitization” and “damage limitation policies” are implied by the 
requirement of complete information flow control. “Data isolation” is the default of the 
access control policy, resource allocation policy and information flow policy on 
internal resources, whereas “control of information flow” addresses the access 
control policy, resource allocation policy and information flow policy on external 
resources. 
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4.1.1.1.4 Description of functionality grouped according to where separation is made 
(space/time) 

In the following paragraphs, we present the approach taken in [TBF13] then we 
comment it versus previous sections (i.e., classical approach and policy-based 
description). 

Separation in space: Applications can be hosted in different partitions. Partitions get 
assigned memory resources (i.e. space). In this way, the separation kernel enforces 
its configuration: that is, access control on partition content, per-partition provision of 
physical memory space and I/O memory space. By confining applications into 
partitions, the separation kernel enforces that these applications can affect neither 
applications in other partitions nor the separation kernel itself. 

Separation in time: Applications can be hosted in different partitions. Partitions get 
assigned CPU time (i.e. time windows). In this way, the separation kernel enforces its 
configuration: that is the allocation of a predefined amount of the CPUs’ time to 
partitions. Several partitions can share the same time window. On a partition switch 
CPUs will be reused. The separation kernel enforces that no residual information is in 
CPU registers or memory caches according to the configuration. The separation 
kernel assigns a priority to every subject to allow priority based scheduling within one 
time window. 

Provision and management of communication objects: Applications hosted in 
different partitions can get assigned a set of communication objects under control of 
the separation kernel. A communication object is an object exposed to one or 
multiple partitions with access rights as defined in the configuration data, thus 
allowing communication between partitions. 

Separation kernel self-protection and accuracy of security functionality: 
Separation kernel self-protection and accuracy of functionality supports reaching and 
keeping a safe and secure state of the MILS system. The separation kernel statically 
assigns automatic invocations of error handling functions to recover from or respond 
to error conditions. 

Again, this characterization is isomorphic to the characterization of Section 4.1.1.1.2 
and Section 4.1.1.1.3. Like the one of Section 4.1.1.1.2, it is optimized to be stand-
alone and concrete. It splits up the data isolation of Section 4.1.1.1.2 of into 
“separation in time” and “separation in space”. The “resource sanitization” of Section 
4.1.1.1.2 is subsumed under “separation in time”. “Control of information flow” is 
represented by “provision and management of communication objects”. “Fault 
isolation” is subsumed under “separation in space” and “self-protection”. 

Also in the SKPP, while claimed as security functional requirements, “fault 
containment” and “resource sanitization” are not listed explicitly in the introductory 
high-level characterization of “core functional requirements” [SKPP, p. 25]. 

 

4.1.1.1.5 Virtualization services on top of separation kernels 

Virtualization is not a necessary part of separation kernels. However, because many 
separation kernel deployments provide support for virtualization services, the concept 
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is described here. We discuss these concepts in form of tables (Table 2 and Table 3), 
juxtaposing a generic description of virtualization and the analogous or differing 
complement in a separation kernel. 

A virtual machine (VM) consists of software that imitates a physical hardware 
machine. The virtual machine will for example give the illusion of a physical CPU and 
physical memory to an operating system that is running in it. An operating system 
running in a virtualization environment is called “guest”. In the MILS context, a 
virtualized operating system is a special case of an application (the term “application” 
was defined in Section 3.2.9). 

A virtual machine monitor (VMM), also called a “host” (for type 2 VMMs) or 
“hypervisor” (for type 1 VMMs, see Table 2 for type 1 and 2 explanation), is the 
software managing virtual machines. 

 

Requirements: 

Table 2 lists virtualization requirements in general and their fulfilment or non-
fulfilment by a MILS separation kernel. 

Virtualization Requirement in General Virtualization Requirement 
Compliance in a MILS Separation 
Kernel 

An operating system running on a VMM 
is characterized by: 

(1) the resource control property, that the 
VMM is in complete control of system 
resources, [PG74] 

Concerning (1), the resource control 
property: In MILS systems, the resource 
control property is implemented by the 
separation kernel via its security policies. 

An operating system running on a VMM 
is characterized by: 

(2) the sufficiency property, that a VMM 
provides an environment for the 
operating system which is sufficient for 
running it. 

Concerning (2), the sufficiency property: 
The sufficiency property means that the 
API provided by a MILS system to its 
applications does not have to provide the 
same API as in virtualization of a 
machine, e.g. for a MILS system it is 
sufficient to provide communication 
channels instead of, for example, a 
network interface, but it need not 
necessarily provide a full replica of 
another machine. In a VMM, the API is 
the full CPU instruction set. When under 
a VMM, a VM attempts to execute an 
instruction that only runs in supervisor 
mode of CPU, VMM intercepts this 
attempt and VMM tries to emulate the 
instruction as faithfully as possible. In a 
separation kernel, when an application in 
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Virtualization Requirement in General Virtualization Requirement 
Compliance in a MILS Separation 
Kernel 

a partition executes an instruction that 
only runs in supervisor mode, the SK 
traps it, and usually its execution is 
rejected. Instead, the separation kernel 
offers explicit additional interfaces to 
allow partitions to do certain things (e.g. 
create new thread within a partition, use 
a new address space within a partition, 
access a shared resource etc.). The 
main difference would be that VMM tries 
to create virtual environment but SK 
does not. 

An operating system running on a VMM 
is characterized by:  

(3) the isolation property, that is 
applications running in different VMs do 
not interfere with each other 

Concerning (3), the isolation property: 
this is provided by the fact that the 
separation kernel enforces temporal and 
spatial separation properties on 
applications. 

An operating systems running on a VMM 
is characterized by: 

(4) the efficiency property that programs 
run on VMM with only minor decreases 
in speed [PG74] 

Concerning (4), the efficiency property: 
While, in practice, the efficiency property 
is probably fulfilled by most MILS 
systems, the emphasis is less on good 
average application performance but 
rather on guaranteed real-time worst 
case execution time bounds. 

(5) While virtualization has traditionally 
been focusing on the isolation of virtual 
machines hosted by the same hardware 
platform, controlled resource sharing, 
such as for example a common storage, 
can also be a desired feature [Kar05]. 

Concerning (5) controlled resource 
sharing: it is well supported by 
communication objects. 

Table 2: Virtualization requirements: in general and their compliance with MILS SK 

 

(Note: instead of the sufficiency property and isolation property [PG74] gives the 
stronger equivalence property, that a VMM provides an environment for programs 
which is essentially identical with the original machine, except for timing effects. 
Our definition is broader to allow for paravirtualization, see below.) 

Implementation: 
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Table 3 lists virtualization implementation characteristics in general and their 
applicability or non-applicability in a MILS separation kernel. 

Virtualization Implementation 
Characteristics (of an Operating 
System) in General 

Virtualization Implementation 
Characteristics (of a MILS application) 
in a MILS Separation Kernel 

(1) Since [Gol73], it is customary to 
distinguish between Type 1 VMMs that 
run on bare-metal hardware (e.g. 
Microsoft’s Hyper-V, IBM’s System z 
Processor Resource/System Manager 
(PR/SM), bare-metal version of VMWare) 
and Type 2 VMMs that run on top of 
another operating system (e.g. 
VirtualBox, user-space version of 
VMWare). An extensive list of VMMs and 
their classification can be found at 
[Wik13]. 

Concerning (1), the VMM type: MILS 
platforms are always of Type 1. Contrary 
to virtualization techniques where 
safety/security requirements do not 
matter, in MILS systems, there is an 
additional emphasis on deployability in 
domains with safety/security 
requirements, e.g. that a MILS system, is 
“NEAT”, which is not necessary for 
VMMs in general. For example, if 
safety/security requirements are not a 
primary concern, VMMs are not only 
provided by stand-alone systems but 
also running on COTS operating systems 
(e.g. a VirtualBox running a Windows on 
a Linux or vice-versa). 

(2) A virtual machine can be run as an 
emulator, intercepting all instructions 
from the operating system running on it, 
this comes at a high performance price 
[PG74]. 

Concerning (2), running a virtual 
machine as emulation: while the 
exception, this can be done by a 
separation kernel, e.g. to run a legacy 
system designed for slower hardware, so 
that the performance cost is acceptable. 

(3) Alternative to (2), a virtual machine 
can be run in a way that it runs an 
operating system directly on a CPU and 
the VMM only intercepts the operating 
system when needed, that is when 
invoked either by a trap coming from the 
application or from elsewhere (e.g. a 
system timer interrupt). 

Concerning (3), running a virtual 
machine directly on hardware: also MILS 
applications can be run by a separation 
kernel directly on a CPU, and the 
separation kernel intercepts the MILS 
application only when certain traps arrive 
(e.g. a system timer interrupt). 

(4) Alternative to (2) and (3), hardware 
virtualization support (also known as full-
virtualisation) introduced by AMD and 
Intel in the mid-2000s ensures that all 
instructions that need to be intercepted 
can be trapped and it increases 
efficiency, by providing support for per-

Concerning (4), hardware support: a 
separation kernel can make good use of 
hardware support for virtualization when 
the running application is an operating 
system, simplifying page table 
management. 
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Virtualization Implementation 
Characteristics (of an Operating 
System) in General 

Virtualization Implementation 
Characteristics (of a MILS application) 
in a MILS Separation Kernel 

VM page tables. 

(5) Paravirtualization is a technique 
allowing to adapt the VM operating 
system and, if needed, the applications 
running on such VM to avoid instructions 
that are either inefficient or, on some 
architectures cannot be trapped (see 
“Note on imperfect virtualization support 
on hardware” below). Recall that, as 
applications can comprise virtualized 
operating systems, invocations of 
instructions to be run in supervisor mode 
is frequent. Paravirtualization replaces 
these supervisor mode instructions. 
Paravirtualization allows applications to 
run more efficiently or allows running 
applications that otherwise would not be 
running at all. 

Concerning (5), paravirtualization: the 
technique of paravirtualization also can 
be applied to applications running within 
a partition of a separation kernel, e.g. a 
paravirtualized Linux operating system, 
that, in the MILS context, is just an 
application. The paravirtualization 
technique may enable applications 
otherwise not runnable on the separation 
kernel to run on the separation kernel, or 
make them more performant. From a 
security point of view, paravirtualization 
does not add any value to the security 
properties of a MILS system but it 
introduces a threat vector of attacks, 
which needs to be taken into account 
when a MILS system is configured. 

Table 3: Virtualization implementation: in general and compliance with MILS SK 

Note on imperfect virtualization support on hardware: Most modern CPUs enable 
to restrict the privileges of untrusted applications (“supervisor” versus “user” mode). 
This feature to restrict user applications to “user” mode is fundamental to general-
purpose operating system design [Tan07, p. 1]. Integrity is a design goal of general-
purpose operating systems and their CPUs, but the complete control of information 
flow channels is not necessarily a design goal neither for general-purpose operating 
systems nor CPUs they run on.  

For example, [AA06, AFOB+12 (p. 153), RI00] and others have noted that, on some 
ia32/ia64 architectures, such as the Pentium, some instructions expose privileged 
state (such as reading out the global descriptor tables). Information flow can be 
mitigated if data, e.g. in global descriptor tables, is kept static. A second type of 
problem occurs when user applications are simply denied operations, but the CPU 
does not trigger any trap for the VMM to handle [AFOB+12, p. 149] also discusses 
similar caveats for another processor, the Cell Broadband Engine Architecture 
(CBEA) processor developed by Sony, Toshiba, and IBM that consists of a POWER 
architecture core and coprocessors elements for e.g. 3D multimedia acceleration. 
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4.1.1.2 Architecture 

A separation kernel uses the interfaces of the hardware components it has been 
assigned in the MILS system in order to provide the services described in Section 
4.1.1.1, enforcing its security policies according to configuration. 

4.1.1.3 Assumptions on the environment 

Hardware components are used by the separation kernel function as specified and 
provide policy enforcement as specified. 

4.1.2 Generic device abstraction component 

A generic device abstraction component is a MILS component having the purpose of 
abstracting the access mechanism of a special purpose hardware device to a defined 
set of connected partitions. In the simplest realization, this component mediates 
accesses from one partition to one hardware device only. The connected partition 
uses as interface to the component a standardized interface. More difficult 
realizations of this component allow connecting more than one partition to the 
component. This form requires a software-based virtualization strategy of the 
hardware component’s functionality, which is supposed to be shared and impossible 
to be virtualized in hardware (e.g. by SR-IOV devices). In other words, all 
functionality that is not virtualizable by hardware shall be virtualized by software to 
provide the sharing functionality. As an example, communication based on an 
ethernet protocol optimized for avionics reliability requirements, Avionics Full Duplex 
Switched Ethernet (AFDX) requires sometimes to spread payload to multiple 
partitions. This is a functionality usually not supported by common (self-virtualizing) 
network hardware, since those devices can route data to one partition, only. Thus, 
the multiplication and distribution of payload needs to be done in software.  

4.1.2.1 Services 

Functionally correct implementation of the abstraction mechanism to the hardware 
devices. 

Functionally correct implementation of the separation mechanism (resource 
allocation policy and/or access control policy) if more than one device is using this 
instance of the component. 

4.1.2.2 Architecture 

Other partitions interact with this component using the abstraction mechanism, it is 
the service provided by the component. For example, you have the POSIX standard 
interface (e.g. “read”, “write”) on the one the side and real hardware register 
accesses on the other side. By this, the Generic Device Abstraction Component 
abstracts the accesses. This component interacts with other component, i.e. 
hardware devices via their interfaces. 

4.1.2.3 Assumptions on the environment 

A separation kernel is available. The hardware device’s interface to the component 
managing and abstracting it is not accessed directly by another component. 
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4.1.3 Console system component 

Historically a console is a workstation at which a human operator can control a 
computer and interact with one program in a text-oriented (line or page) or graphical 
fashion. When interaction was simple and diagnostics means were primitive, a 
program would issue messages to the console, and the operator would grab the 
attention of the program from time to time. At the point in time the operator inputs 
commands, the program will usually answer by resuming its flow of messages. 
Progress in computing made it desirable to be able to address multiple programs at 
once, giving rise to a separation of the concept of a message console and that of the 
console or terminal used by an operator, and to the concept of multiplexing multiple 
virtual consoles over one physical one (or even within multiple layers of virtual 
consoles, in a tunnelling fashion). 

The message console concept will be addressed by the audit system component 
(see Section 4.1.6). Here we focus on the console as a channel for interaction 
between an operator and programs. Note that on systems where users in the 
computer sense are not tied to human beings, a console is often absent, or hidden 
and used mainly for diagnostics and maintenance. 

Therefore, a console system component connects applications to human interface 
devices, and thus is an instance of the Generic Device Abstraction Component. 

If a console presents one program at a time, or several programs that belong to one 
security domain, then there will be no ambiguity for the human operator regarding the 
security classification. It is up to the human operator to ensure that he is controlling 
the right partition. If a console presents an operator with multiple security domains at 
the same time, then there has to be a non-bypassable mechanism such that the 
operator can always tell which domain he/she is interacting with. 

It typically has one of the following forms: 

- Physical, including specific displays, input devices [RD07, Del10]. In [Del12a], 
in addition to a specific monitor and console, a USB interface is also 
considered. Nordbotten and Gjertsen built a system where a console manager 
and a display manager are each encapsulated into a partition [NG12]. 

- Virtual, providing one console channel to one program or to a group of 
programs belonging to a single security domain, but running itself within some 
form of transport that can multiplex multiple such virtual consoles. Such 
transport can route to a local physical console or to something else, say, over 
a network connection offering adequate security properties. 

4.1.3.1 Services 

Input, output (e.g. display) streams 

Multiplexing of streams 

A physical console, in addition to a display device and human-machine input devices, 
can provide physical connection ports for external devices. Unlike external ports that 
would be associated with the computer itself, these external ports are meant to be 
associated with the current operator. HMI devices such as displays, controllers, audio 
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devices, usually are of this nature and are simply managed by making them available 
to the program or programs of the current operator. If the console can be switched 
between operators, then a policy must be devised for switching these devices as 
well, or not. 

Some devices can be connected to a console, that are themselves concerned with 
multi-domain security. An example would be a mass-storage device through the file 
system component. Policies that make sense include: 

- Mapping the device to the computer rather than the console, e.g. in the case 
of a mass-storage device, honouring file permissions and ownerships inside 
the regular file system component. 

- Mapping the entire block device to the programs of the current operator and 
letting them access arbitrary locations in the device, which now cannot be 
trusted by other programs. 

4.1.3.2 Architecture 

Data and control streams are separated [Del12a, p. 48], and passed from its clients 
to hardware for input and output. If not all channels are dedicated, then resources are 
scheduled for reuse (“multiplexing”). The architecture avoids information flow when a 
resource is reallocated. 

A console capable of serving multiple security domains at the same time can 
disambiguate which one or ones are presented to the user by: 

- Reserving a trusted portion of the display for telling what is displayed on the 
rest of the display and allowing the selection thereof. This must be “always 
invoked” in a very literal sense, meaning that a full-screen application cannot 
be supported, or an auxiliary display must be added. 

- Providing a “secure access key” that cannot be overridden by applications, 
that lets the user invoke a trusted status/selection panel that is overlaid on 
applications’ displays. One must be very careful that operators are trained to 
ignore what they see if they are not positive that they invoked the trusted 
status/selection panel, as a malicious application could impersonate that 
panel, effectively realizing a Trojan horse, since applications have access to 
the display area where the trusted panel is shown. This also requires a 
guaranteed response time for showing the trusted status/selection panel after 
pressing the secure access key, otherwise there would still be a temporary 
opening for a Trojan horse. 

4.1.3.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the console 
component. 

4.1.4 Network system component  

A network system component is a MILS component having the tasks (1) of 
abstracting the used network infrastructure and topology connecting the MILS system 
with other platform-external systems and (2) of abstracting or hiding the physical 
location of a partition’s communication partners. Usually the network system 
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component also (3) abstracts the access mechanism to the network device and, thus, 
is a special purpose instantiation of the Generic Device Abstraction Component. Note 
that a network system component can be very complex and may by implemented by 
multiple partitions running encapsulated sub-functions for handling this complexity. 
For example, partition A could contain TCP/IP stack A’, partition B could contain 
TCP/IP stack B’ and partition C could make the decision to route packets either 
through A or B. 

For fulfilling task (1), the abstraction of the used network infrastructure and topology, 
the component has to implement the used network infrastructure protocols. The 
border between application-level protocols and infrastructure protocols is usually 
fluent, depending on the required means of communication. However, as example 
one could draw the border between layer 4 and layer 5 of the OSI model, i.e. that the 
network system component implements the protocol stack up to UDP, TCP, … and 
leaves the implementation of higher layers up to the connected partition. The network 
system component is mentioned in [UV05], with e.g. implementing CORBA, DDS, 
HTTP, SOAP. The task of the network system component on the ingress data traffic 
is to analyse the routing information and to route the ingress data to the associated 
connected partition correctly. This may or may not include reassembling of the data 
stream, depending if the connected partitions require lower protocol stack levels for 
their purposes or not. However, for full abstraction of the network infrastructure, the 
network system component should reassemble the data stream and provide only the 
application-level payload to the connected partitions. For the egress traffic, the 
partition provides the application-level payload to the network system component, 
which generates valid data network packets and transmits them to the correct 
partition (if on the same platform) or transmits them via the network link. 

Task (2), the abstraction of the communication partner’s physical location, is another 
task performed by the network system component. From the application point of view 
encapsulated in the boundaries of its partition, the application does not know whether 
the communication partner is located on the same hardware platform or platform-
externally. The task of the network system component is to determine the location of 
the communication partner and the correct routing of the data stream. 

Task (3), the abstraction of the device interaction (i.e. the driver), applies only if the 
MILS system is actually connected to a network. To this task also applies to virtualize 
the network device to allow network sharing among the connected partitions.  

By implementing all three tasks, the network component is required to ensure 
separation of data stream, in particular if one instance of this component handles 
data streams of different criticality (thus the component is MLS). Having such an MLS 
implementation may also require considerations on load-balancing and Quality of 
Service on the network link. For reducing complexity, the system designer should 
consider to implement multiple instances of network system components handling 
data of only one criticality (SLS components). However, this is only feasible if the 
system possesses multiple network devices or the network device is capable to 
support hardware virtualization technology.  
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For ensuring separation, it is also conceivable to use other MILS components, such 
as crypto components, which apply cryptographic methods to the data stream 
beforehand sending it to the network component. 

Similar proposals for a network protocol component occur as MILS network system 
protection profile (MNSPP) [RD07, Del10, Del12a]. Other related work mentions a 
Partitioning Communications System (PCS) [AFOB+12, Uch07] or MILS Message 
Router (MMR) [AFOB+12, AFHOT06, ZSP+12]. The described functionality of those 
components is similar to a subset of the network system component. However, it is 
difficult to draw a clear line between the functionality of the PCS compared to the one 
of the MMR. For avoiding complexity in terminology, we find it more intelligible to use 
the network system component to consolidate and cover the functionality of the PCS 
and the MMR. 

4.1.4.1 Services 

Functionally correct implementation of network infrastructure protocols. 

Functionally correct implementation of the data routing to connected partitions 
including its reassembling (if applicable) of ingress data traffic. 

Functionally correct segmentation of egress data streams received by connected 
partitions. 

Functionally correct implementation of the device interaction and its abstraction. 

4.1.4.2 Architecture 

The network system component is a component interacting with other partitions using 
it. If the MILS system possesses network devices, the network system component 
interacts with a subset of the device’s interfaces. 

4.1.4.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the network 
protocol component. 

4.1.5 File system component 

A file system component is a MILS component and an instantiation of the Generic 
Device Abstraction Component that implements file system services. It is described 
in [RAV07]. The purpose of the File system component is the abstraction of the 
access mechanism and the physical location of the block devices storing data 
permanently. For decoupling the physical location of the storage, the component 
could use the services of the Network component. To maintain the separation 
properties, the component has to ensure separation in a physical or logical (or both) 
way: 

- Physical Separation: by storing data of different partitions on different physical 
locations of the storage volume (i.e. using the hard disk partitions) or on 
different storage volumes. 

- Logical Separation: by applying cryptographic methods (e.g. provided by a 
crypto component) or special storage patterns using the same storage 
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partition (e.g. gap storage with different offsets, special file system formats, 
…). 

4.1.5.1 Services 

Functionally correct implementation of the applied separation mechanism to ensure 
data separation of stored data. 

Functionally correct implementation of the access mechanism to the device (i.e. 
driver), if the storage device is located on the same hardware platform. 

4.1.5.2 Architecture 

The file system component is a component interacting with other partitions using it. If 
the storage device is located remotely the file system component may interacts with 
other components as well. 

4.1.5.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the file 
system component. 

4.1.6 Audit system component 

An audit system component is a MILS component that implements audit services that 
can be used by other components [Del12b, p. 24]. 

4.1.6.1 Services 

Functionally correct implementation of audit system. 

4.1.6.2 Architecture 

The file audit component is an optional component interacting with other partitions 
using it. The benefit of audit can be (1) to document that an entity has received a 
piece of information (non-repudiation) and (2) to monitor the MILS system, e.g. for 
information flow policy violations by components, (3) get event notifications from 
partitions to the audit system. 

4.1.6.3 Assumptions on the environment 

A separation kernel is available. The separation kernel does not bypass the audit 
system component. 

The separation kernel supports auditing [Del12b, p. 24]. 

A messaging system is available [Del12b, p. 24]. 

The compilation of memory structures is supported [Del12b, p. 24]. 

The audit system is able to retrieve information about the origin of the audit 
information it is supposed to store. 

4.1.7 Generic application component 

4.1.7.1 Services 

The generic application component implements any functional service required by an 
application. 
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4.1.7.2 Architecture 

No statement can be made on the architecture of a generic application component. 
The system integrator can choose to configure a generic application component so 
that it is confined to a precise time-slot, limited memory and tightly controlled 
communication, so that it is not needed to trust its developer of the application, even 
if he is malicious. This kind of application is usually called “untrusted application”. In 
other scenarios, it may be meaningful to give the application strong access to the 
system, and even trust it do enforce a security policy for other applications, such as 
an information flow policy, e.g. when the application acts as a downgrader. This 
application is usually called “trusted application”. A trusted application can serve as 
guard to any application, whereas an untrusted application only can serve as guard 
to applications that are even less trusted. 

4.1.7.3 Assumptions on the environment 

The generic application component may assume the existence of other components, 
e.g. network component, other generic device abstraction component.  

 

4.2 Hardware components 

4.2.1 Introduction 

[SKPP] formulates hardware requirements for separation kernel in the non-standard 
class “platform assurance” (APT). They are again discussed in [AFHOT06]. 
[AFOB+12] discuss the security needs of separation kernels with regards to existing 
multicore architectures.  

[Tri12] discusses in particular on the topic of hardware requirements for mixed-
criticality systems (safety and security) from the perspective of aviation computer 
systems and formulates current research directions. 

In general hardware requirements for MILS systems are dependent on the MILS 
architecture itself and the external interfaces required by the system’s functionality. If 
the MILS architecture relies on a separation kernel as fundamental component for 
implementing the separation and information flow property of MILS, the basic 
hardware requirements are defined by the separation kernel. In general separation 
kernels rely on common hardware protection units as the Memory Management Unit 
(MMU) and recently also Input/Output MMUs (IOMMUs). In addition, separation 
kernels also use hardware timers. 

Those units are essentially the only functionally indispensable hardware elements for 
a separation kernel that are specified to be robust against attacks through illicit 
information flows, i.e. internal partition interference or malicious flows by misusing 
external interfaces (remote attacks). Any added hardware elements exist rather for 
in-depth defence, for added safety against (random) hardware failures, or for 
robustness against physical local attacks (mechanisms such as authenticated boot 
and OS code, storage for secrets, etc.). 
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4.2.2 Processing units 

Processing units, such as processor cores or special purpose co-processor, are 
essential parts of MILS systems. Processing cores are responsible for processing the 
software-based MILS components by using other system resources. By following the 
control flow encoded in the software component’s programming code the cores are 
able to achieve the intended component’s objectives, usually by interacting with other 
hardware resources, such as memory or devices. Even if the major purpose of 
processing units is their ability to execute the binary code, they also have 
requirements with respect to spatial and temporal separation. In particular this 
applies to the interaction with the memory hierarchy comprising of various cache-
levels and system’s memory. However, it also applies to the internal processing flow 
of the processing cores, which have to ensure separation, too.  

During partition runtime especially challenging are concurrent memory and device 
accesses of novel multicore processing platforms, due to the measureable 
interferences in access times depending on the amount of active cores [NP12]. 
During partition switch for the purpose of ensuring spatial and temporal isolation 
software (usually the separation kernel) has to ensure the proper sanitization of the 
(shared) resources used during processing the control flow. This includes the flush of 
core-internal pipelines or caches to prevent cache attacks [YF13, SBY+13]. 

One important mechanism for ensuring spatial and time separation is the provision of 
different execution modes for commands processed by the processing units. For 
example changing critical configuration of other hardware component, like MMUs 
settings, needs to be restricted in a way that only privileged software, e.g. the SK can 
execute the commands for modifying those settings. 

4.2.3 Memory Management Units (MMUs) 

MMUs translate virtual addresses used by the processors into physical addresses 
required for interacting with the resource memory. In general this component can 
also be used for protecting certain memory area from processor accesses, it thus 
enforces an access control policy. Dependent on the architecture of the MMU and its 
way to maintain the translation tables, the MMU can be configured in a static or 
dynamic way: 

- Static means that all partition applications have static entries in the MMU’s 
translation table construct, which do not change during system runtime. If 
identical virtual addresses are used multiple times in various partitions, the 
hardware has to provide a runtime mechanism for indicating which partition is 
currently active and indicating the correct MMU translation entries (e.g. 
runtime identifier or reconfiguration of pointers to the translation tables). Such 
a static MMU configuration also implies a static spatial separation of the 
memory without dynamic (re)allocation of memory regions for partitions. 

- Dynamic means that the separation kernel has to reconfigure the translation 
tables during partition switch. This approach does not require the previously 
mentioned hardware platform identifiers but might require additional 
processing cycles during partition switch. 
Dynamic MMU configuration also allows realizing dynamic (re)allocation of 
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memory during application runtime. However, the necessary increased trust in 
the reallocation mechanism is essential for assuring the security properties of 
the separation kernel (e.g. zeroing memory after memory release). 
Additionally, dynamic MMU configuration can be useful for implementing 
performant inter partition communication, since the ownership of 
communication pages can be shared or transferred between partitions for 
purpose of avoiding the overhead of data copying. 

Note that some available separation kernels use a combination of both mechanisms, 
e.g. for realizing a static spatial separation of the memory but also allowing shared 
pages for fast inter partition communication. 

A security vulnerability of current MMUs is their level of trust put into the reliable 
operation of its configuring software, e.g. the separation kernel. More specifically this 
means that the separation kernel is able to interact with memory pages actually 
belonging to partitions “privately”, without being visible to the SK. [JH11] discusses 
this issue and provides hardware improvements for future MMUs. For example, 
[JH11] propose that a VM can mark its page as private (in hardware) after allocation 
from a hypervisor (analogous to a separation kernel in our context). Having the 
private bit set this page can only be accesses by the VM and the hypervisor only can 
sanitize it as soon as the VM allows it. Encoding new features into MMU hardware, of 
course again raises the problem of ensuring that the hardware realization of this 
approach is correct. 

4.2.4 Input/Output Memory Management Units (IOMMUs) 

An IOMMU provides transparent, isolated access to virtual instances of I/O devices to 
one or more partitions [KS08]. These virtual device instances can be used just like a 
physical instance of the same I/O device by these partitions. Other partitions have no 
access to these virtual devices, nor can the virtual devices access memory spaces of 
partitions other than the ones they have been assigned to. 

If the system’s functionality demands to use external DMA-capable devices, 
hardware components as IOMMUs are helpful to protect the system memory from 
invalid DMA triggered by the device and thus, to achieve spatial separation. The task 
of IOMMUs is similar to the one of MMUs. However, there are two differences to 
MMUs: 

1. MMUs are placed between the processor and the system memory. The 
location of IOMMUs is between devices and the system memory. 

2. The intention to apply MMUs into hardware was to increase the performance 
for address translations between virtual and physical addresses. Later on, its 
use for memory protection has been introduced. The motivation of using 
IOMMUs is the other way around. Primary IOMMUs have been deployed for 
memory protection reasons but can also be used for address translation. 
However, using the address translation mechanism smartly can open the 
opportunity of sharing hardware devices usually not intended to be shared, 
e.g. by reconfiguration of the address tables on partition switch. Thus, an 
IOMMU can provide transparent, isolated access to virtual instances of I/O 
devices to one or more partitions [KS08]. Nevertheless, this approach is only 



 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 40 of 63 

possible for stateless devices with immediate and short processing which only 
perform DMA on behalf of cores, e.g. external FPU or vector processing 
engines. 

IOMMUs are getting required in a system in which DMA-capable devices shall be 
directly assigned to an untrusted partition, i.e. an untrusted driver shall be allowed to 
interact without additional software-based checks of the separation kernel (e.g. for 
performance reasons).  

Since in such a design the untrusted driver can access the entire memory abusing 
the directly assigned device by triggering DMA to addresses outside of its allowed 
memory resources, the hardware requires a component to restrict those accesses. 
This is the task of the IOMMU.  

For proper hardware architectures with IOMMUs it is necessary that the IOMMU 
identifiers used for device’s identification are provided in a secure way. In particular 
[SLN+10], [SV10], [WR11] and [MIM+13] discuss attacks using DMA and harming 
IOMMU-based hardware designs. One class of those attacks abuses Message 
Signalled Interrupts (MSIs) to trigger interrupts which do not belong to the device. 
These attacks are possible since former IOMMUs only mediated transfers based on 
(1) the accessing device, (2) the involved addresses and (3) the operational code for 
the transaction but ignoring the data content of the transaction. For example, Intel 
counteracts the class of attacks by a technology called “Interrupt Remapping”, which 
validates also the interrupt vectors (messages) of the MSI [Int11]. Another class of 
attacks uses a vulnerability of PCI to PCIe bridges, where the identifier is added by 
the bridge but not by the devices connected to the bus “behind” the bridge. More 
generic views on this issue introduce discussion on suitable device interconnect 
topologies. The interconnect topology should provide the separation kernel 
possibilities to uniquely identify the physical hardware interface (e.g. card slot) the 
device is connected to. In general a bus strategy achieves this requirement worse 
than a star topology. 

In addition IOMMUs usually do not apply countermeasures against devices 
performing timing attacks, like exhausting bandwidth, interrupt bombing or 
uninterruptible long bus transactions (a timing attack on latency that can alter real-
time properties without needing to saturate the bus). Some timing attacks again 
various in their utilization on the used interconnect topology. 

4.2.5 I/O sharing 

A special case of directly assigned device interfaces is the approach of using self-
virtualizing devices. With this technology it is possible to securely share a device 
without requiring trusted software components for runtime device interactions 
(runtime driver). For example it may also allow transferring parts of the functionality of 
the network component into the hardware. Using this technology the hardware device 
provides a physical interface for configuration purposes and a various number of 
virtual interfaces appearing as runtime interface to the partitions that shall interact 
with the device instance. A special standard called Single Root I/O (SR-IOV) [SRIOV] 
extends the PCI Express (PCIe) standard and defines the hardware interface for 
PCIe devices. To restrict DMA of virtual functions to the assigned partitions only, an 
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IOMMU is essential. Further investigation on platform requirements using PCIe 
SRIOV is provided in [MIM+13].  

Work on performance comparison of software-based and hardware-based I/O 
sharing approaches are provided by [YYW08] and [WR08]. Both publications 
conclude that hardware-based sharing using IOMMUs and direct mapping almost 
performs with native performance. However, [WR08] additionally investigates on the 
provided granularity of memory protection (inter- and intra-guest) of software-based 
approaches compared to different strategies for reconfiguring the IOMMU on partition 
switch. The final statement of this work is that software-based pre-validation of DMA 
descriptors performs better than some approaches (not direct map!) for hardware-
based late validation of DMA transfers. Also software-based sharing strategies 
enable enhanced intra-partition memory protection with respect to the granularity. 
However, the downside of software-based approaches is their inability to protect 
against device misbehaviours and the required assurance property of the software 
components. 

4.2.6 Timers 

Separation kernels are in charge to provide separation properties in time and space 
for a MILS system. Regarding time separation (e.g. real-time scheduling of 
applications) the kernel requires a reliable signal defining the unit “time” for the 
system. For this purpose hardware normally provides a periodic and stable 
transducer in combination with a counter counting the generated signals. Knowing 
the frequency of the transducer allows defining the resolution and thus the smallest 
possible unit of time in the system. Both the transducer and the counter together 
build the basics for implementing timers. Separation kernels use timers in one of two 
fashions: 

 Inflexible periodic timers that give rise to a so-called «tick» timer in the kernel, 
periodically fired irrespective of whether there is activity to be carried out or 
not. A number of OSes have this design because they are backwards 
compatible with the Intel 8253 Programmable Interval Timer (PIT) that was the 
only timer chip found in the original IBM PC (discounting the alarm function of 
the MC146818 RTC chip that does not have a high repeat rate), even though 
modern PC-compatible hardware has better timers. 

 more flexible arbitrarily programmable timers that give rise to a «tickless» 
kernel that wakes up only when necessary. Intel/Microsoft High-Precision 
Event Timers (HPET, [Int04]), formerly known as Multimedia Timers because 
they originated from the need for high-resolution arbitrary timers for sound 
generation in desktop PCs, provide this capability with a free-running counter 
and comparators although a subtlety of this hardware implementation for some 
software designs is that a timer must be armed in the future only, e.g. it will not 
trigger if armed too late just based on the fact that the comparison is “now 
true”. Alternative designs typical of microcontrollers involve downcounters with 
a feature for auto-reloading the timer with the next deadline that was provided 
by the software ahead of time. This trivially eliminates jitter, whereas 
downcounters without auto-reload have to be compensated in software by 
accounting for the time lost between the previous deadline and the time when 
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the software actually loads the next deadline from some interrupt handler, and 
while it is easy to compensate for absolute drift, jitter or a small lateness can 
never be completely eliminated on processors where writing fully time-
deterministic code is impractical. 

One timer is usually sufficient. Having several timers available may yield simpler or 
faster software, although an implementation can be fairly simple with just one 
hardware timer if that timer has just the right flexibility. 

4.2.7 Chain of trust 

A last important fact necessary to mention in this chapter is the topic of trusted 
initialization of the different layers in a MILS system. Usually these different layers 
are initialized in a well-defined sequence, e.g. first general boot code, followed by the 
layer providing the separation property, followed by other layers providing system-
specific security functions and applications. To ensure that the entire sequence is not 
compromised a root of trust is needed at the beginning of the sequence. Usually a 
special hardware component storing a secret key and a hard coded boot code 
provides this feature. Thus, also hardware components implementing the root of trust 
can be necessary [Fre10]. Regarding trust in the software involved in the boot 
sequence, there have been 2 schools of thought: 

- All software from the reset vector (possibly with the assistance of firmware in an 
internal ROM) is trusted and therefore hardware-assisted mechanisms are 
provided to verify initial trust, and then it is up to this trusted software to preserve 
the chain of trust to the next trusted software until usual hardware protection 
mechanisms (user/supervisor mode and memory protection) are used to allow 
controlled execution of untrusted code. This is the pattern used by the IBM/Sony 
Cell BE™ [Shi06], Freescale’s Secure Boot [Fre11a] and Trust Architecture 
[Fre11b] and, to our knowledge, ARM’s TrustZone® [ARM13]. 

- Boot software is not trusted, but hardware mechanisms exist in order to re-
establish a trusted context later on, or let trusted software establish that initial 
software was not altered nor bypassed and therefore could only have taken 
known action. This is the pattern used by the Trusted Computing Group™’s 
Trusted Platform Module [TCG11]. 

4.3 System configuration of components 

The configuration of a MILS system comprises the configuration of the separation 
kernel, and the configuration of other components, such as the configuration of 
applications, and the configuration of hardware.  

4.3.1 Configuration of the separation kernel: configuration space 

We have defined the separation kernel to be the main policy-enforcing element of a 
MILS system, using hardware mechanisms provided by the hardware in the MILS 
core. Thus, its configuration options to a large extent need to reflect the configuration 
of a MILS system. In Section 3.2.13 of this document, a separation kernel has 
already been characterized as enforcing the resource allocation, access control and 
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information flow policies. Thus, the configuration of a separation kernel equals the 
configuration of these policies. 

The above definition is fairly abstract. Giving an exhaustive, yet product-independent 
list of configuration parameters is non-trivial, and perhaps not even desirable: If we 
start with SKPP, despite the string “configuration” occurs at least 510 times in SKPP, 
SKPP does not give a comprehensive list of configuration data at one place. For 
example, SKPP mentions system memory and processing time per partition [SKPP, 
p. 78] and then information flow policy configuration data, audit configuration data, 
clock settings, and self-test period as other examples [SKPP, p. 175]. Taking into 
account that an operating system used for IMA (recall Section 2.1) can be provided 
by a separation kernel (“a separation kernel is similar to the "partitioning kernels" 
used in integrated modular avionics (IMA), but is more aggressively minimized”) 
[BDR+08, p. 9], possibly a better, more concrete, yet still product-independent 
example can be found in [ARINC-653]. For an IMA operating system, [ARINC-653, p. 
22] specifies that, (1) for each partition, its memory requirements, its scheduling 
parameters (period, duration), identity of messages to be sent/received by the 
partition are configured by a configuration table, (2) globally, that a configuration 
table of inter-partition communication objects is kept and a fault handling is 
configured.  

4.3.2 Configuration of other components: configuration space 

However, note that the separation kernel configuration only addresses part of the 
overall MILS system configuration. For example [AFOB+12, p. 181] emphasizes that, 
in addition to the configuration layer at the separation kernel level, the configuration 
of a MILS system is also strongly determined by the configuration of its hardware. For 
example, the configuration of a MILS system includes which PCI slot to use for which 
PCI card, the memory mapping of hardware and so on.  

4.3.3 Configuration management 

Configuration management: The need of configuration management for secure 
systems is addressed by the [CC12] in general and, more particular, for IMA systems 
in [DO-297, Rom08]. It is emphasized that to reproduce the configuration of a system 
using a separation kernel, the configuration of each level must be stored, including 
hardware and configuration data of applications running in partitions managed by the 
separation kernel. [SKPP, p. 17, 27] defines (1) the generation of an abstract 
configuration vector by a configuration tool, (2) its transformation to machine-
readable configuration data on a boot medium by a load function, and (3) its usage 
by a boot function during operation. Also, [ARINC-653, p. 22] stipulates that 
configuration tables of an IMA operating system must be built separate from the 
operating system and they are not directly accessed by applications; an 
implementation detail that of course is only binding for a separation kernel if it is to be 
used for an IMA system. However, except for that mention of separate build of 
configuration tables that is not a requirement in [SKPP], detailed configuration 
workflow guidance for an entire MILS system is out of scope and rather scarce in this 
IMA [ARINC-653] application software standard interface description. 
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Reconfiguration: Reconfiguration of a system is making some change(s) to the 
configuration of that system; we call that a configuration change. 

A configuration change modifies the system configuration data. For example, in the 
separation kernel the Information Flow Policy could be modified. When a 
configuration change occurs by going the system offline and reboot, the change is 
called a static configuration change. When the change occurs on-line without reboot 
during an execution, then the configuration change is dynamic [SKPP, p. 16, p.40; 
NLI, Section 5.2]. If configuration change capability is not built-in into a separation 
kernel, it can be implemented by the component of the MILS platform, for example 
select or upload another image of the separation kernel into the MILS platform or a 
partition component that specializes in doing this. Another example would be the 
dynamic configuration of virtualization hardware, which e.g. could be done from 
within a partition. In this case, you have already configured the virtual interfaces for 
the partition in the separation kernel, and then you connect the virtual device 
hardware to them. 

4.3.4 System update 

Related to topic of configuration management is the treatment of system updates of 
the MILS components. A common automotive use case for reconfiguration is a 
software update of possibly every software component in the system. The security 
policy for system updates typically specifies that system updates cannot be done by 
the internet but only locally via the on-board bus. 

However, many automotive manufacturers (OEMs) tend to require software updates 
‘over the air’ and request for improved methods to guarantee (1) fail safety 
(robustness in case of failures during the update procedure), (2) integrity (updating 
sources other than originated by the OEM must be rejected) and (3) security (the 
software update mechanism must be resistant against attacks). Since access control 
policies themselves may be subject of software updates, hence modification, special 
care must be taken to self-protection. 
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Chapter 5 Conclusion 

5.1 Overview of component policies and reuse 

An overview of policies enforced and usage of services by other components is given 
in . 

In , for “provides” or “used-by” relations, an “M” means “provision/use is mandatory”, 
an “O” means “provision/use is optional”. In the case of “M” for “component X used by 
component Y” component X is meant only as mandatory for component Y, if the 
MILS system has component Y at all (this also may not be that case). As it is always 
an implementation option, for brevity, we do not consider self-use or self-invocation in 
this table. A component is a guard if it enforces some resource allocation policy, 
access control policy and/or information flow policy in the sense (2a) or (2b) of 
Section 3.2.7. 
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M M M  M M M M M 

Console 
system 
component 

 M  O    O M 

Generic 
device 
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File 
system 
component 

 M O O  O  O M 

Audit 
system 
component 

 M  O  O O  M 

Application 
(trusted) 

O O O      O 

Application 
(untrusted) 

O[1] O[1] O[1]       

Hardware components 

Processor  M  M M M M M M 

MMU  M  M  M/O[2]   M 

IOMMU  M  M[3] M[3] M[3] M[3] M[3] M 

I/O sharing  M    O O[4]  M 

Timer    M      

Chain of 
trust 

 [5]  O     M 

Remarks: 

[1] A trusted application can serve as guard to any application, whereas an untrusted application only can serve as guard to 
applications that are even less trusted.  

[2] MMUs may be needed for network components depending on hardware, e.g. on PowerPC network devices are memory-
mapped. Also on Intel, the entire PCI express is memory mapped. 

[3] If and only if DMA is used. 
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[4] E.g. a physical harddisk that is accessed by the file system component. 

[5] As a chain of trust denies access if a signature is not provided properly, it can be seen either as access control policy or as 
integrity policy. 

Table 4: Policies enforced and usage by other components 

We observe that access control policy is provided by almost any component, a 
resource allocation policy or information flow policy is more rarely encountered. A 
timer and a chain of trust do not implement their own access control/resource 
allocation/information flow policies, but can be used by the separation kernel to 
support resource allocation and integrity requirements. 

5.2 Secure design principles 

In Table 5 we compare our MILS experience with the Saltzer and Schroeder Design 
Principles [SS75] previously introduced in Section 2.4. It can be seen that many 
principles carry over to MILS systems. Those principles that are not fully carried over 
are those which clash with the stringent performance and real-time requirements of 
MILS systems. 

Design Principle (as in 
[SS75]) 

Explanation (as 
summarized by [Bis00]) 

Implementation in MILS 

Economy of Mechanism The protection mechanism 
should have a simple and 
small design. 

Some MILS components, 
such as the separation 
kernel, are small. 

Fail-safe Defaults The protection mechanism 
should deny access by 
default, and grant access 
only when explicit 
permission exists. 

The default policy in a 
MILS system is: no 
information flow and no 
resource sharing unless 
specified. 

Complete Mediation The protection mechanism 
should check every 
access to every object. 

This is implemented by a 
small reference monitor, 
the separation kernel. 

Open Design The protection mechanism 
should not depend on 
attackers being ignorant of 
its design to succeed. It 
may however be based on 
the attacker’s ignorance of 
specific information such 
as passwords or cipher 
keys. 

MILS design is 
comparatively well 
understood and open. 

Separation of Privilege The protection mechanism 
should grant access 
based on more than one 

For performance reasons, 
and because this kind of 
policy is not so common in 
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Design Principle (as in 
[SS75]) 

Explanation (as 
summarized by [Bis00]) 

Implementation in MILS 

piece of information. (e.g., 
two commanders need to 
agree to launch a 
weapon). 

embedded systems, this is 
usually not implemented in 
MILS systems. 

Least Privilege The protection mechanism 
should force every 
process to operate with 
the minimum privileges 
needed to perform its task. 

This is usually only 
implemented at a partition 
granularity level in MILS 
systems (the calculation of 
the “minimum privileges” 
can be non-trivial). 

Least Common 
Mechanism 

The protection mechanism 
should be shared as little 
as possible among users. 
(e.g. shared variables 
shall be avoided) 

An example 
implementation of this 
principle is that 
middleware (user space 
libraries) is usually put into 
partitions of a separation 
kernel. 

Psychological 
Acceptability 

The protection mechanism 
should be easy to use (at 
least as easy as not using 
it). 

Use of the protection 
mechanism is 
implemented by fail-safe 
defaults. The 
decomposition of a system 
into partitions requires 
some initial effort, but in 
the long run makes it 
easier to understand and 
maintain its functionality. 

Table 5: Secure design principles and their implementation in MILS 

5.3 Results 

We have identified and described the origins where MILS comes from (Chapter 2) 
and established a foundation we can use for the description of the architecture of 
MILS systems. For example, we have obtained a common “picture” of a MILS system 
(Section 3.1). We have also created working definitions for fundamental MILS terms 
in a bottom-up way, including definitions of closely related security policies such as 
access control policy, resource allocation policy or information flow policy (Section 
3.2). Several iterations were needed to obtain this in a clean, yet understandable 
way, which may explain why we have not seen this bottom-up approach done 
elsewhere.  
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We have also identified some widely used terms we chose to avoid, such as “PCS” or 
“middleware”, because we consider them of little help and even misleading. We were 
able to apply the terminology to previous work on security gateway (Section 3.3). 

We have reached consensus to present hardware and software components as 
equal citizens and compiled a catalogue of MILS hardware and software 
components, including a security-centric description (Chapter 4). In particular, we 
have identified a generic device abstraction component. We have identified several 
instances where separation kernel policy enforcement depends on guarantees by 
hardware components. In Section 5.1, we have summarized security policies 
provided by components, mutual interdependencies of components and classified 
components as “guards”. This could serve as a basis for a more detailed analysis of 
information flows and their guards of concrete components as proposed in 
[AFOB+12, Chapter 4]. Section 5.2 establishes that MILS largely follows well-
established principles of secure system design. Our document appears to be a 
reasonable basis for further description of individual components within the EURO-
MILS project. 
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Chapter 6 Glossary 

Access control policy: A component’s access control policy acts on the 
component’s interface used to manage exported resources. In this respect it is 
identical to the aforementioned resource allocation policy (Section 3.2.5). However, 
the interface is characterized by that a request to the resource includes an explicit 
reference to the resource (e.g. the resource’s name or a numerical identifier). 
Identically to the aforementioned resource allocation policy (Section 3.2.5), the 
access control policy defines which of the component’s resources are kept internal to 
the component and which are exported to which other components. When a resource 
is exported to more than one other component, the resource is shared. The access 
control policy is in the “space” domain. 

Application: An application is one or more executable(s). 

Audit System Component: An audit system component is a MILS component that 
implements audit services that can be used by other components 

Communication object: A communication object is an exported resource provided 
by a component. It can be shared between components. Communication objects are 
used by components to communicate between them. 

Component: A component is a term to describe the decomposition of a (in general, 
any) system into meaningful self-contained parts. For example, a (yet to be defined) 
MILS system consists of components. In general, components may be implemented 
by (1) hardware, (2) software, or (3) a combination of hardware and software 
[CBB+03, DO-297]. 

Configuration: The configuration of a component contains the component’s identity, 
and it defines any security policy (access control policy, resource allocation policy, 
information flow policy) enforced by the component. An information flow policy 
configuration also may be implicitly configured by resource allocation policy 
configuration and access control policy configuration. 

Console system component: A console system component connects applications 
to human interface devices, and thus is an instance of the Generic Device 
Abstraction Component. 

Domain: A domain (or “security domain”) is a unit of separation created and 
maintained by any MILS component, for example by an application (Section 3.2.9), a 
function (Section 3.2.12), or the MILS core (Section 3.2.14), which is enforcing a 
security policy on exported resources. 

File system component: A file system component is a MILS component and an 
instantiation of the Generic Device Abstraction Component that implements file 
system services. 

Function: A function is a logical group of partitions for achieving common objectives. 
The implied partitions may be connected using information flows. 
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Generic device abstraction component: A generic device abstraction component 
is a MILS component having the purpose of abstracting the access mechanism of a 
special purpose hardware device to a defined set of connected partitions. 

Information flow policy: The term information flow policy has more than one usage,  

(1) the most simple one is to use it as an umbrella term for “access control 
policy” and “resource allocation policy” combined or  

(2) to express policies where pieces of information (messages) are written to 
one or several communication objects(s) by a sender and subsequently these 
messages are read from the communication object(s) by a receiver. Such 
policies may include rules based  

(2a) on the sender/receiver of the messages and/or  

(2b) on the content of these messages.  

Note: for most components, interpretation (1) is used. (2a) will be used in the context 
of a separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of 
security gateway (discussed as an example in Section 3.3). An information flow 
policy in the sense of (2a) is either explicit, based on identities of components 
between which information flow is allowed, or implicit, as unambiguously defined by 
the resource allocation policy and access control policy. 

MILS architecture: “MILS architecture” refers to the architecture of the 
implementation of a concrete MILS system. 

MILS architecture template: “MILS architecture template” refers to a template 
encompassing many possible MILS systems. 

MILS platform: A MILS platform consists of the MILS core and optional software 
and/or hardware components that provide secondary security functionalities and do 
not contribute to the enforcing of separation. 

MILS system: A MILS system is a concrete deployment of a MILS platform with a 
defined set of partitions. 

MLS system: An MLS system is a system with different security requirements for 
different components. It can be implemented by a MILS system. 

Multi-level Secure (MLS) component: A Multi-Level Secure Component is a 
component that handles information of with different security levels concurrently 
during one runtime instance. 

Multiple Single-Level Secure (MSLS) component: A Multiple Single-Level Secure 
Component is a special kind of SLS component that processes data of multiple 
security levels, but always maintains separations between classes of data by 
exclusively processing only one security level during its runtime instance. For 
example this separation can be implemented by allowing access to a different 
security level only when the component has rebooted with different parameters. Also 
deploying multiple instances of one SLS component processing different single 
security levels turn this SLS component into an MSLS component. 
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Note: in [Alv98] this was restricted to temporal separation, “at a single time-point, only 
handles information from one component”. If such a single-level process is to be 
implemented as untrusted process [Alv98], it can be supplemented by an appropriate 
labelling and filtering of messages. 

Network system component: A network system component is a MILS component 
having the tasks (1) of abstracting the used network infrastructure and topology 
connecting the MILS system with other platform-external systems and (2) of 
abstracting or hiding the physical location of a partition’s communication partners. 
Usually the network system component also (3) abstracts the access mechanism to 
the network device and, thus, is a special purpose instantiation of the Generic Device 
Abstraction Component. 

Partition: A partition is a component that serves to encapsulate application(s) and/or 
data. Thus, the content of a partition is application(s) and possibly other data. A 
partition is a unit of separation with respect to 

 resource allocation in the space and time domains, 

an access control policy and an information flow policy in the space domain. 

Resource: A resource is anything (processor such as a CPU or a processing core, 
memory, software, data, network, etc.) internally used or exported by a component. A 
resource may be physical (a hardware device) or logical (a piece of information). A 
resource may be shared by multiple components or be dedicated to a specific 
component. 

Exported resources are those resources to which an explicit reference is possible via 
a component interface, e.g., the programming or configuration interface. Internal 
resources are those resources used exclusively by the component, and which have 
no explicit reference via a component interface. 

Resource allocation policy: A component’s resource allocation policy acts on the 
component’s interface used to manage exported resources. This interface is 
characterized by that a request for a resource is made without knowing in advance 
how the resource is “named” or “addressed”. The request is made for a quantity of 
the resource, and then the component decides whether to grant or deny the request 
to export that resource in the desired quantity. The resource allocation policy defines 
which of the component’s resources are kept internal to the component and which 
are exported to which other components. When a resource is exported to more than 
one other component, the resource is shared. A resource allocation policy can be in 
the “space” domain, when resources can be used simultaneously but are kept in 
different spatial (e.g. memory) locations or in the “time” domain, where resources are 
used sequentially, but kept in different time slices. An example for resource allocation 
in the “time” domain is the allocation of a CPU to a component for a limited period of 
time. 

Separation kernel: A separation kernel A separation kernel is a component that 
enforces a resource allocation policy and an access control policy on its exported 
resources (partition, resources allocated to a partition, communication objects). 
Communication objects allow for controlled information flow between partitions. A 
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separation kernel may have an explicit or an implicit information flow policy on its 
partitions (see definition of information flow policy for details). 

The separation kernel uses separation-supporting hardware to provide the separation 
between partitions in a MILS core. 

Shared resource: When a resource is exported to more than one other component, 
the resource is shared. 

Single-Level Secure (SLS) component: A Single Level Secure Component is a 
component that every time processes data of one security level. 

System integrator: The person composing the MILS system from its components. 

Virtual machine: A virtual machine (VM) consists of software that imitates a physical 
hardware machine. The virtual machine will for example give the illusion of a physical 
CPU and physical memory to an operating system that is running in it 
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Chapter 7 List of Abbreviations  

AFDX Avionics Full Duplex Switched Ethernet 

AMD Advanced Micro Devices 

CBEA Cell Broadband Engine Architecture 

CC Common Criteria for Information 
Technology Security [CC12] 

CDS Cross-Domain Solution 

COTS Commercial Off-the-Shelf 

CPU Central Processing Unit 

DMA Direct Memory Access 

EAL Evaluation Assurance Level 

HW hardware 

IMA Integrated Modular Avionics 

I/O Input/Output 

IO/MMU I/O Memory Management Unit 

IPC Inter-Process Communication 

LRU Line Replacement Unit 

MILS Multiple Independent Levels of Security 

MIPP MILS Integration Protection Profile 

MLS Multi-Level Secure 

MMU Memory Management Unit 

MSI Message Signalled Interrupt 

MSLS Multiple Single-Level Secure 
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NEAT Non-Bypassable, Evaluatable, Always 
Invoked, Tamperproof 

NSA National Security Agency 

OEM Original Equipment Manufacturer 

PCI Peripheral Component Interconnect 

PCIe Peripheral Component Interconnect 
Express 

PCS Partitioning Communications System 

SK Separation Kernel 

SKPP Separation Kernel Protection Profile 

SLS Single-Level Secure 

SW software 

VM virtual machine 

VMM Virtual Machine Monitor 

 



 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 56 of 63 

Chapter 8 Bibliography 

[AA06] Keith Adams, Ole Agesen, A Comparison of Software and Hardware 
Techniques for x86 Virtualization, ASPLOS'06, p. 2-13, 2006, ACM, New York, NY, 
USA, http://www.ittc.ku.edu/~niehaus/classes/750-
s09/documents/asplos235_adams-2006.pdf. 

[AFHOT06] Jim Alves-Foss, Scott Harrison, Paul W. Oman, Carol Taylor, The MILS 
Architecture for high-assurance embedded systems, International Journal of 
Embedded Systems, vol. 2, no. 3--4, p. 239-247, 2006, 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6810. 

[AFOB+12] Jim Alves-Foss, Paul Oman, Ryan Bradetich, Xiaohui He, Jia Song, 
Implications of Multi-Core Architectures on the Development of Multiple Independent 
Levels of Security (MILS) Compliant Systems, no. 0704-018, 2012, University of 
Idaho, Center for Secure and Dependable Systems, Moscow, Idaho, 
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA568860. 

[Air97] Airlines Electronic Engineering Committee, Avionics application software 
standard interface: ARINC specification 653, January, 1997, Aeronautical Radio, Inc., 
2551 Riva Road, Annapolis, MD 21401, http://www.arinc.com/. 

[Alv98] Jim Alves-Foss, The Architecture of Secure Systems, Hawaii Interational 
Conference on System Sciences, p. 307-316, January, 1998, 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=p
df. 

[And72] James P. Anderson, Computer Security Technology Planning Study, no. 
ESD-TR-73-51, Oct., 1972, Deputy for Command and Management Systems HQ 
Electronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, MA, 
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf. 

[And08] Ross Anderson, Security engineering, 2008, J Wiley & Sons, 
http://www.cl.cam.ac.uk/~rja14/book.html. 

[ANS01] American National Standards Institute, ANSI X3.172-1996 American 
National Standard Dictionary of Information Technology (ANSDIT), Release 16, 
2001, http://www.incits.org/ANSDIT/Ansdit.htm. 

[ARINC653] Airlines Electronic Engineering Committee, Avionics application software 
standard interface: ARINC specification 653, January, 1997, Aeronautical Radio, Inc., 
2551 Riva Road, Annapolis, MD 21401, http://www.arinc.com/. 

[ARINC811] Airlines Electronic Engineering Committee (ARINC), Commercial Aircraft 
Information Security Concepts of Operation and Process Framework, no. ARINC 
specification 811, January, 2005, Aeronautical Radio, Inc., 2551 Riva Road, 
Annapolis, MD 21401, http://www.arinc.com/. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6810
http://www.arinc.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf
http://www.incits.org/ANSDIT/Ansdit.htm
http://www.arinc.com/


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 57 of 63 

[ARM13] ARM Ltd., 
http://www.arm.com/products/processors/technologies/trustzone.php. 

[ARP4754] Society of Automotive Engineers, Safety Assessment for Airborne 
Systems, Equipment Committee, ARP4754: Certification Considerations for Highly-
Integrated Or Complex Aircraft Systems, 1996, Society of Automotive Engineers, 
SAE World Headquarters, 400 Commonwealth Drive, Warrendale, PA 15096-0001 
USA, http://www.sae.org. 

[Avi08] Avionics designers choose SYSGO real-time embedded software for A400M 
cargo system, Avionics Intelligence, 10 Dec 2008, http://www.avionics-
intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-
embedded-software-for-a400m-cargo-system.html. 

[BBH+05]. William Beckwith, Carolyn Boettcher, Mark Hama, Jahn Luke, Tod 
Reinhart, High Assurance Safe and Secure Distributed Systems and Information 
Sharing, Infotech@Aerospace Conferences, 2005, American Institute of Aeronautics 
and Astronautics. 

[BCK03] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 
2nd ed, Addison-Wesley 2003. 

[BDR+08] Carolyn Boettcher, Rance DeLong, John Rushby, Wilmar Sifre, The MILS 
Component Integration Approach to Secure Information Sharing, Digital Avioncis 
Systems Conference (DASC), 2008, http://www.csl.sri.com/~rushby/abstracts/dasc08 

[Bis00] Matt Bishop, Saltzer's and Schroeder's Design Principles, 2000, 
http://nob.cs.ucdavis.edu/classes/ecs153-2000-04/design.html. 

[CBB+03] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, 
Reed Little, Robert Nord, Judith Stafford, Documenting Software Architectures: Views 
and Beyond, Addison-Wesley 2003. 

[CC12] Common Criteria Sponsoring Organizations, Common Criteria for Information 
Technology Security Evaluation. Version 3.1, revision 4, vol. 1--3, September, 2012, 
http://www.commoncriteriaportal.org/cc/. 

[Cordis12] CORDIS document server 
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197
414 

[Cof12] Darren Cofer, Complexity-reducing design patterns for cyber-physical 
systems, 2011, Rockwell Collins, 
http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/Rockwell
%20Collins%20META%20Final%20Report.pdf. 

[CVdM09] Stephen Chong, Ron van der Meyden, Using architecture to reason about 
information security, 2009, http://www.cse.unsw.edu.au/~meyden/research/arch-
filter.pdf. 

[DCS+04] John Detombe, Darin Cowan, Mike Smith, John O'Brien, Survey of Multi-
Level Security (MLS) Products, no. CR 2004-268, 2004, Defence R & D Canada, 
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc82/p523341.pdf. 

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.csl.sri.com/~rushby/abstracts/dasc08
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197414
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197414
http://www.cse.unsw.edu.au/~meyden/research/arch-filter.pdf
http://www.cse.unsw.edu.au/~meyden/research/arch-filter.pdf


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 58 of 63 

[Del06] Rance DeLong, MLS with MILS?, slides, 2006, 
http://www.cisr.us/events/downloads/guests/delong.pdf 

[Del10] Rance J. DeLong, An Evaluation and Certification Scheme for MILS, Fourth 
Annual Layered Assurance Workshop (LAW 2010), 2010, 
http://fm.csl.sri.com/LAW/2010/law2010-09-DeLong.pdf. 

[Del12a] Rance DeLong, The MilsTM Architecture -- a Foundation for Dependable 
Systems, The Open Group Conference: Real-Time & Embedded Systems Forum, 
2012, http://www.opengroup.org/public/member/proceedings/q212/23RT.htm 

[Del12b] Rance DeLong, MILS Integration Protection Profile (MIPP) and the MIPP 
Commentary (slides), The Open Group Conference, Barcelona, Spain, 2012. 

[Dod83] Department of Defense, Trusted computer systems evaluation criteria 
(Orange Book), DoD 5200.28-STD, 1983, 
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt 

[DO-297] RTCA SC-200 / EUROCAE WG-60, DO-297: Integrated Modular Avionics 
(IMA) Development Guidance and Certification Considerations, November, 2005, 
Radio Technical Commission for Aeronautics (RTCA), Inc., 1828 L St. NW., Suite 
805, Washington, D.C. 20036. 

[DPF09] Julien Delange, Laurent Pautet, Peter Feiler, Validating safety and security 
requirements for partitioned architectures, Reliable Software Technologies--Ada-
Europe 2009, p. 30-43, 2009, Springer, 
http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf. 

[DPK10] Julien Delange, Laurent Pautet, Fabrice Kordon, Design, Verification and 
Implementation of MILS systems, Proceedings of the 21th International Symposium 
on Rapid System Prototyping, 2010, http://pagesperso-
systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf. 

[Fr83] Lester J. Fraim, Scomp: A Solution to the Multilevel Security Problem, 
Computer, vol. 16, no. 7, p. 26-34, 1983, IEEE. 

[GH08] Olivier Gilles, Jerome Hugues, Validating requirements at model-level, 
IDM'2008 5-6 juin Mulhouse, 2008, http://www.idm08.uha.fr/actes/p5.pdf. 

[GN09] Tor Gjertsen, Nils Agne Nordbotten, Multiple independent levels of security 
(MILS) - a high assurance architecture for handling information of different 
classification levels, 2009, Norwegian Defence Research Establishment (FFI), 
http://rapporter.ffi.no/rapporter/2008/01999.pdf. 

[Gol73] Robert P. Goldberg, Architectural Principles for Virtual Computer Systems, 
1973, Ph Thesis, Harvard, Cambridge, MA, http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=AD0772809. 

[Gre08] Green Hills Software, INTEGRITY-178B Separation Kernel Security Target, 
no. IN-ICR750-0100-GH01ST, May, 2008, http://www.niap-ccevs.org/cc-
scheme/st/vid10119/. 

[HASK] Bundesamt für Sicherheit in der Informationstechnik (BSI), Sirrix AG security 
technologies, Protection Profile for High-Assurance Security Kernel: Version 1.14, 
June, 2008, 

http://fm.csl.sri.com/LAW/2010/law2010-09-DeLong.pdf
http://www.opengroup.org/public/member/proceedings/q212/23RT.htm
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf
http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf
http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf
http://rapporter.ffi.no/rapporter/2008/01999.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0772809
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0772809


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 59 of 63 

http://web.archive.org/web/20110726034516/http://www.sirrix.com/media/downloads/
54500.pdf. 

[HHOAF05] W. Scott Harrison, Nadine Hanebutte, Paul W. Oman, Jim Alves-Foss, 
The MILS Architecture for a Secure Global Information Grid, The Journal of Defense 
Software Engineering, Crosstalk: The Journal of Defense Software Engineering, vol. 
18, no. 10, p. 20-24, Oct., 2005, http://www.crosstalkonline.org/storage/issue-
archives/2005/200510/200510-Harrison.pdf. 

[Hou11] Carol S. Houck, Publications and Future Support for Separation Kernels, 
May, 2011, http://www.niap-
ccevs.org/announcements/SKPP%20Email%20to%20Vendors.pdf. 

[Int04] Intel Corporation, “IA-PC HPET (High Precision Event Timers) Specification”, 
2004. 

[Int11] Intel Corporation, “Intel® Virtualization Technology for Directed I/O”, 2011. 

[ISA62433] International Society of Automation, Security for industrial automation and 
control systems, ISA-62443, 2013, http://isa99.isa.org/Documents/Drafts/. 

[JH11] S. Jin and J. Huh, “Secure MMU: Architectural Support for Memory Isolation 
among Virtual Machines,” in 41st International Conference on Dependable Systems 
and Networks - Workshops (DSN-W), 2011, pp. 217-222. 

[Kar05] Paul A. Karger, Multi-Level Security Requirements for Hypervisors, Computer 
Security Applications Conference, 21st Annual, 2005, 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6161. 

[Kem83] Richard A. Kemmerer, Shared Resource Matrix Methodology: An Approach 
to Identifying Storage and Timing Channels, ACM Transactions on Computer 
Systems, vol. 1, no. 3, p. 256-277, 1983, 
http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-kemmerer.pdf . 

[KS08] P.A. Karger, D.R. Safford, "I/O for Virtual Machine Monitors: Security and 
Performance Issues," Security & Privacy, IEEE , vol.6, no.5, pp.16,23, Sept.-Oct. 
2008 

[KW07] Robert Kaiser, Stephan Wagner, Evolution of the PikeOS Microkernel, 
MIKES: 1st International Workshop on Microkernels for Embedded Systems, 2007, 
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf. 

[KW08] David Kleidermacher, Mike Wolf, MILS Virtualization for Integrated Modular 
Avionics, Digital Avionics Systems Conference (DASC), p. 1.C.3-1-1-C.3-1-8, 2008, 
IEEE. 

[Lam71] Butler W. Lampson, Protection, Proc Fifth Annual Princeton Conference on 
Information Sciences and Systems, p. 437-443, 1971, Princeton, 
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf. 

[LRP+11] Joseph Loyall, Kurt Rohloff, Partha Pal, Michael Atighetchi, A Survey of 
Security Concepts for Common Operating Environments, Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011 14th IEEE 
International Symposium on, p. 244-253, 2011, https://dist-

http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-Harrison.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-Harrison.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6161
http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-kemmerer.pdf
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 60 of 63 

systems.bbn.com/people/krohloff/papers/2011/Loyall-WORNUS-CameraReady-
Paper1.pdf. 

[MIM+13] Daniel Münch, Ole. Isfort, Kevin Müller, Michael Paulitsch, Andreas 
Herkersdorf. Hardware-Based I/O Virtualization for Real-Time Embedded Avionic 
Systems Using PCIe SR-IOV. International Conference on Embedded Computer 
Systems: Architectures, Modeling and Simulation (SAMOS XIII) (in submission), 
2013. 

[MP97] Donald Mackenzie, Garrel Pottinger, Mathematics, Technology, and Trust: 
Formal Verification, Computer Security, and the U.S. Military, IEEE Annals of the 
History of Computing, vol. 19, no. 3, p. 41-59, 1997. 

[MPS+12] Kevin Müller, Michael Paulitsch, Reinhard Schwarz, Sergey Tverdyshev, 
Holger Blasum, MILS-Based Information Flow Control in the Avionic Domain: A Case 
Study on Compositional Architecture and Verification, Digital Avionics Systems 
Conference (DASC) proceedings, 2012, IEEE. 

[MPT+12] Kevin Müller, Michael Paulitsch, Sergey Tverdyshev, Holger Blasum, 
MILS-Related Information Flow Control in the Avionic Domain: A View on Security-
Enhancing Software Architectures, Workshop on Open Resilient human-aware 
Cyber-physical Systems (WORCS 2012), 2012, IEEE, 
http://dx.doi.org/10.1109/DSNW.2012.6264665. 

[MWTG00] W. Martin, P. White, F. Taylor, A. Goldberg, Formal Construction of the 
Mathematically Analyzed Separation Kernel, Proc 15th International Conference on 
Automated Software Engineering, p. 131-141, 2000. 

[NG12] Nils Agne Nordbotten, Tor Gjertsen, Towards a certifiable MILS based 
workstation, 2012, Norwegian Defence Research Establishment (FFI), 
http://www.ffi.no/no/Rapporter/12-00049.pdf. 

[NLI06] Thuy D. Nguyen, Timothy E. Levin, Cynthia E. Irvine, High robustness 
requirements in a Common Criteria protection profile, Innovative Architecture for 
Future Generation High-Performance Processors and Systems, International 
Workshop on, p. 66-78, 2006, IEEE Computer Society, Los Alamitos, CA, USA, 
http://calhoun.nps.edu/public/handle/10945/7141. 

[NP12] Jan Nowotsch, Michael Paulitsch, “Leveraging Multi-Core Computing 
Architectures in Avionics,” European Dependable Computing Conference (EDCC), 
2012. 

[PG74] Gerald J. Popek, Robert P. Goldberg, Formal Requirements for Virtualizable 
Third Generation Architectures, Comm. ACM, vol. 17, p. 412-421, July, 1974. 

[Pri92] P.J. Prisaznuk, Integrated Modular Avionics, National Aerospace and 
Electronics Conference (NAECON), p. 39-45, 1992. 

[RAV07] Jeffrey Choi Robinson and Jim Alves-Foss, A High Assurance MLS File 
Server, 2007. 

[RD07] John Rushby, Rance DeLong, MILS Integration Protection Profile, 2007, 
http://www.csl.sri.com/users/rushby/slides/mipp-jan07.pdf. 

http://dx.doi.org/10.1109/DSNW.2012.6264665
http://www.ffi.no/no/Rapporter/12-00049.pdf
http://calhoun.nps.edu/public/handle/10945/7141
http://www.csl.sri.com/users/rushby/slides/mipp-jan07.pdf


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 61 of 63 

[RHN+07] Jeffrey Choi Robinson, W. Scott Harrison, Nadine Hanebutte, Paul Oman, 
and Jim Alves-Foss, Implementing Middleware for Content Filtering and Information 
Flow Control, CSAW ’07, 2007. 

[RI00] John Scott Robin, Cynthia E. Irvine, Analysis of the Intel Pentium’s Ability to 
Support a Secure Virtual Machine Monitor, Proceedings of the 9th USENIX Security 
Symposium, 2000, www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA423654. 

[RKG07] R. Ramaker, W. Krug, W. Phebus, Application of a Civil Intergrated Modular 
Architecture to Military Transport Aircraft, Digital Avionics Systems Conference 
(DASC), 2007, p. 2.A.4-1 to 2.A.4-10, 2007. 

[Rom08] George Romanski, Management of Configuration Data in an IMA System, 
Digital Avionics Systems Conference (DASC), p. 1.B.5-1 - 1.B.5-10, 2008, IEEE. 

[Rus81] John Rushby, Design and verification of secure systems, Eighth ACM 
Symposium on Operating System Principles, p. 12-21, 1981, 
http://www.sdl.sri.com/papers/sosp81/sosp81.pdf. 

[Rus01] John Rushby, Formal Verification of McMillan’s Compositional Assume-
Guarantee Rule, 2001, SRI International, 
http://ftp.csl.sri.com/users/rushby/papers/mcmillan.pdf. 

[Rus08a] John Rushby, Separation and Integration in MILS (The MILS Constitution), 
SRI-CSL-08-XX, February, 2008, SRI International, 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.9324. 

[Rus08b] John Rushby, A Formal Model for MILS Integration, no. SRI-CSL-08-XX, 
May, 2008, SRI International, 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.9005. 

[SBY+13] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy David Terei, 
Alejandro Russoa, “Eliminating Cache-Based Timing Attacks with Instruction-Based 
Scheduling,” in Proc. of the 18th European Symposium on Research in Computer 
Security (ESORICS) 2013, 2013, p. 718-735. 

[SG95] Mary Shaw, David Garlan, Formulations and formalisms in software 
architecture, Computer Science Today, p. 307-323, 1995, Springer, http://www-
2.cs.cmu.edu/~Compose/ProgCodif.pdf. 

[Shi06] Kanna Shimizu, «The Cell Broadband Engine processor security architecture, 
Hardware solutions to problems insoluble in software», 
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/, IBM 
DeveloperWorks®, April 2006. 

[SKPP] Information Assurance Directorate, U.S. Government Protection Profile for 
Separation Kernels in Environments Requiring High Robustness. Version 1.03, June, 
2007, http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/. 

[SLN+10] F. L. Sang, É. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting an 
I/OMMU vulnerability,” 5th International Conference on Malicious and Unwanted 
Software (MALWARE), pp. 7-14, 2010. 

[SNAC10] Systems and Network Analysis Center / Information Assurance 
Directorate, Separation Kernels on Commodity Workstations, March, 2010, 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.9324
http://www-2.cs.cmu.edu/~Compose/ProgCodif.pdf
http://www-2.cs.cmu.edu/~Compose/ProgCodif.pdf
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/
http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 62 of 63 

http://www.niap-
ccevs.org/announcements/Separation%20Kernels%20on%20Commodity%20Workst
ations.pdf. 

[SPL95] Olin Sibert, Phillip A. Porras, Robert Lindell, The Intel 80x86 Process 
Architecture: Pitfalls for Secure Systems, Security and Privacy, Proceedings, 1995 
IEEE Symposium on, p. 211-222, 1995. 

[SRIOV] PCI-SIG. Single Root I/O Virtualization and Sharing Specification - Revision 
1.01. Technical report, 2010. 

[SS75] Jerome H. Saltzer, Michael D. Schroeder, The Protection of Information in 
Computer Systems, Proceedings of the IEEE, vol. 63, no. 9, p. 1278-1308, 1975, 
http://web.mit.edu/Saltzer/www/publications/protection/, 
\urlhttp://www.cs.virginia.edu/~evans/cs551/saltzer/. 

[Ste91] Daniel F. Sterne, On the Buzzword `Security Policy', IEEE Computer Society 
Symposium on Research in Security and Privacy, p. 219-230, 1991. 

[SV10] F. L. Sang and V. Nicomette, “Attaques DMA peer-to-peer et contremesures,” 
in In Proc. of Symposium sur la Sécurité des Technologies de l’Information et des 
Communications (SSTIC 2011), 2011, pp. 147-174. 

[Tan07] Andrew S. Tanenbaum, Modern Operating Systems, 3rd edition, 2007, 
Prentice Hall, Upper Saddle River, NJ, USA. 

[TBF13] Sergey Tverdyshev, Holger Blasum, Igor Furgel, Compositional Assurance: 
EURO-MILS ST/PP for Separation Kernel Based Virtualization, ICCC 2013, 
http://www.fbcinc.com/e/iccc/day2.aspx. 

[TCG11] Trusted Computing Group™, «TPM Main Specification», 
http://www.trustedcomputinggroup.org/resources/tpm_main_specification, 2011. 

[Til+13] Axel Tillequin, and others, “Project Requirements: Classification, Cross-
domain analysis and High-Level Architecture”, EURO-MILS Deliverable D11.1 

[Tri12] Benoît Triquet, “Mixed Criticality in Avionics”, Airbus, in Workshop on Mixed 
Criticality Systems, European Commission, February, 2012, 
http://cordis.europa.eu/fp7/ict/embedded-systems-
engineering/presentations/triquet.pdf. 

[Uch05] Gordon Uchenik, Protection Profile for Partitioning Communications Systems 
in Environments Requiring High Robustness, V0.85 (available on request from 
Objective Interface Systems). 

[Uch07] Gordon Uchenik, Partitioning Communications System for Safe and Secure 
Distributed Systems, Digital Avioncis Systems Conference (DASC), p. 2.E.5-1 - 
2.E.5-8, 2007. 

[UV05] Gordon M. Uchenik, W. Mark Vanfleet, Multiple independent levels of safety 
and security: high assurance architecture for MSLS/MLS, Military Communications 
Conference, 2005. MILCOM 2005. IEEE, p. 610-614, 2005. 

[Wik13] Wikipedia, Comparison of platform virtual machines - Wikipedia, The Free 
Encyclopedia, 2013, 

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/triquet.pdf
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/triquet.pdf


 

MMIILLSS  AArrcchhiitteeccttuurree    

 

December 2014 Page 63 of 63 

http://en.wikipedia.org/w/index.php?title=Comparison_of_platform_virtual_machines&
oldid=567335721 [Online; accessed 15-August-2013]. 

[Win13] Wind River, Wind River VxWorks MILS Platform 3.0, 2013, 
http://www.windriver.com/products/platforms/vxworks-mils/MILS-3_PN.pdf. 

[Wis11] SKPP Sunset Q & A, 2011, http://www.niap-
ccevs.org/announcements/SKPP%2520Sunset%2520Q%26A.pdf. 

[WM12] Carl Waldspurger and Mendel Rosenblum. 2012. I/O virtualization. Commun. 
ACM 55, 1 (January 2012), 66-73. DOI=10.1145/2063176.2063194 
http://doi.acm.org/10.1145/2063176.2063194 

[WOM02] Mike Weller, Roger Odell, Lee MacLaren, Partitioning Kernel Protection 
Profile Report, 2002, 
http://web.archive.org/web/20031209153634/http://www.omg.org/docs/security/02-
11-07.doc . 

[WP08] Alex Wilson, Thierry Preyssler, Incremental Certification and Integrated 
Modular Avionics, Digital Avionics Systems Conference (DASC), p. 1.E.3-1 - 1.E.3-8, 
2008, IEEE. 

[WR08] P. Willmann, S. Rixner, and A. L. Cox, “Protection Strategies for Direct 
Access to Virtualized I/O Devices,” in 2008 USENIX Annual Technical Conference, 
2008, pp. 15-28. 

[WR11] R. Wojtczuk and J. Rutkowska, “Following the White Rabbit: Software 
Attacks Against Intel VT-d Technology,” 2011. 

[YF13]Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low Noise, L3 
Cache Side-Channel Attack,” 2013, pp. 1-9. 

[YYW08] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman, “IBM Research Report 
- Direct Device Assignment for Untrusted Fully-Virtualized Virtual Machines,” IBM, 
2008. 

[ZAF06] Jie Zhou, Jim Alves-Foss, Architecture-Based Refinements for Secure 
Computer Systems Design, Proc. Policy, Security and Trust, November, 2006. 

[ZAF08] Jie Zhou, Jim-Alves Foss, Security policy refinement and enforcement for 
the design of multi-level secure systems, Journal of Computer Security, vol. 16, p. 
107-131, 2008, IOS Press. 

[ZSP+12] Yinping Zhou, Yulong Shen, Qingqi Pei, Xining Cui, Yahui Li, Security 
Information Flow Control Model and Method in MILS, 2012 Eighth International 
Conference on Computational Intelligence and Security

http://doi.acm.org/10.1145/2063176.2063194
http://web.archive.org/web/20031209153634/http:/www.omg.org/docs/security/02-11-07.doc
http://web.archive.org/web/20031209153634/http:/www.omg.org/docs/security/02-11-07.doc


 

  

 
 

Secure European virtualisation for trustworthy applications in critical domains. 
The mission of the EURO-MILS project is to develop a solution for virtualization 
of heterogeneous resources and provide strong guarantee for isolation of 
resources by means of Common Criteria certification with usage of formal 
methods. 

 

www.euromils.eu 

 

for further Information please contact the coordinator  

TECHNIKON Forschungs- und Planungsgesellschaft mbH 

coordination@euromils.eu 


