

 EEUURROO--MMIILLSS

SSeeccuurree EEuurrooppeeaann VViirrttuuaalliissaattiioonn ffoorr

TTrruussttwwoorrtthhyy AApppplliiccaattiioonnss iinn CCrriittiiccaall DDoommaaiinnss

MMIILLSS AArrcchhiitteeccttuurree

Project number 318353

Project acronym EURO-MILS

Project title EURO-MILS:
Secure European
Virtualisation for Trustworthy
Applications in Critical
Domains

Start date of the project 1st October, 2012

Duration 36 months

Programme FP7/2007-2013

Project website www.euromils.eu

Editors/Authors: Holger Blasum (SYSGO AG), Sergey Tverdyshev, Bruno Langenstein (DFKI / Deutsches

Forschungszentrum für künstliche Intelligenz), Jonas Maebe, Bjorn De Sutter (Universiteit Gent), Bertrand
Leconte, Benoît Triquet (AIRBUS), Kevin Müller, Michael Paulitsch (EADS Deutschland GmbH), Axel Söding-
Freiherr von Blomberg (OpenSynergy GmbH), Axel Tillequin (EADS France SAS)

Further information on the EURO-MILS Project: http://www.euromils.eu

The research leading to these results has received funding from the European Union’s Seventh

Framework Programme (FP7/2007-2013) under grant agreement number 318353.

MMIILLSS AArrcchhiitteeccttuurree

Whitepaper 2014

Executive Summary

We introduce a generic description of MILS systems (Chapter 2), and the MILS
architecture template (Chapter 3). Chapter 4 discusses MILS main components. The
practical aim of this document is two-fold: (1) to get a common understanding of MILS
terms and definitions, and (2) to provide a framework to derive the information flow, access
control and resource allocation of the demonstrators from individual MILS components.

MMIILLSS AArrcchhiitteeccttuurree

Table of Content

Chapter 1 Introduction ... 1

Chapter 2 MILS concepts and state of the art .. 2

2.1 Modular high-assurance safety in avionics .. 2

2.2 Modular high-assurance computer security ... 3

2.3 Certification aspects ... 7

2.4 Architectural decomposition and modelling .. 8

Chapter 3 MILS representation adopted by EURO-MILS 10

3.1 MILS architecture template .. 10

3.2 MILS terminology ... 16

3.3 Example of a MILS system .. 22

Chapter 4 MILS main components .. 24

4.1 Software components .. 24

4.2 Hardware components ... 37

4.3 System configuration of components ... 42

Chapter 5 Conclusion ... 45

5.1 Overview of component policies and reuse ... 45

5.2 Secure design principles .. 47

5.3 Results ... 48

5.4 Acknowledgment.. 49

Chapter 6 Glossary ... 50

Chapter 7 List of Abbreviations .. 54

Chapter 8 Bibliography .. 56

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 1 of 63

Chapter 1 Introduction

EURO-MILS claims that “the project's cornerstone is MILS (Multiple Independent
Levels of Security), a high-assurance security architecture that supports the
coexistence of untrusted and trusted components, based on verifiable separation
mechanisms and controlled information flow” [Cordis12]. While MILS is well
established in practice, and products claiming MILS compliance do exist since the
mid 2000s, it so far has not been standardized or given a formal definition, in
particular “there is no standard that defines which functionalities reside in a MILS-
compliant system and how a MILS kernel should be designed.” [DPF09, p. 4].

In the absence of such a standard, to reflect meaningfully MILS, a common
understanding of some terms related to “architecture” is helpful. We introduce a
generic description of MILS systems (Chapter 2), and the MILS architecture template
(Chapter 3). Chapter 4 discusses MILS main components.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 2 of 63

Chapter 2 MILS concepts and state of the art

In publications on MILS such as [AFHOT06] reference is made to high-assurance
safety (in particular avionics) and high-assurance security. We briefly recapitulate
both backgrounds, based on well available material, without claiming to completely
cover each development until the present. We also introduce certification and
architectural decomposition and modelling aspects of MILS.

2.1 Modular high-assurance safety in avionics

Safety assurance levels: [ARP4754] introduces a notion of safety assurance levels: if
the failure of an application would have an impact that causes severe damage (e.g.
loss of aircraft), the application is of a high assurance level. Otherwise, if the failure of
an application would have an impact that causes a minor nuisance (e.g. loss of
passenger entertainment system), the application is of a low assurance level.
Applications at a high safety assurance level have stronger process requirements
(planning, development, verification) than applications at a low safety assurance.

IMA: Integrated Modular Avionics (IMA) is an architectural concept for modular
avionics software systems that has been inspired from previous architectural
concepts for physically modular hardware systems that consisted of LRUs (Line
Replacement Units). IMA replaces multiple instances of separate and dissimilar
LRUs with fewer common processing modules, and provides shared power supplies,
housing and communication links. IMA decomposes an IMA system into (1) an IMA
platform consisting of hardware and core software doing resource management and
process scheduling, and (2) IMA applications, which are software components
interacting with the IMA platform.

IMA systems are designed to host several applications with appropriate isolation on a
set of shared hardware and software resources. In IMA, applications execute in an
environment generally called a set of partitions. A partition is a unit of separation
regarding resource (i.e., CPU, memory, etc.) allocation in space and time domains.
The IMA architecture dictates the underlying operating system (OS) to be developed
for hard real-time, safety critical avionics applications. One of the functional
requirements applied to such an OS is to host multiple independent aircraft
applications while the computing platform shall not introduce significant common
failure modes between those applications; evidences of the mechanisms providing
isolation between those applications shall be demonstrated. One upside is that this
enables incremental qualification, under which one application can be upgraded
without requiring the others to undergo new certification.

IMA-related standards include a common interface for applications [ARINC653], and
guidance for the development and certification of systems [DO-297].

[ARINC653] requires an operating system to manage partitions and a rich set of
interfaces to manage their inter-partition communication, periodic assignment of CPU

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 3 of 63

time to a partition, applications (“processes”) within a partition, memory allocation,
and a health monitor responsible for reporting hardware, operating system software
and application failures. [ARINC653] provides implementable interfaces for the
above-mentioned functionalities (e.g., parameters and return values including error
codes are defined).

Processes for the system development, certification planning, requirements
determination, safety assessment, implementation verification and process
assurance have been developed for complex integrated systems in avionics in
general [ARP4754]. Similarly, [DO-297] describes the IMA-specific aspects of design
assurance for all parties involved in development, integration, verification and
validation of IMA systems. As considerations of the IMA platform, [DO-297, p. 11]
lists availability (functional performance and resource management, health
monitoring), integrity (including protection features, fault detection and partitioning),
safety (appropriate architecture and design assurance), fault management and
composability. [DO-297, p. 14] defines the aim of “robust partitioning” to provide an
equivalent level of functional isolation and independence as a federated system
implementation. A partitioning analysis demonstrates that “no application or sub-
function in a partition could affect the behaviour of a sub-function or application in
another partition in an adverse manner”. [DO-297] splits validation, verification,
configuration management and certification processes into tasks done at the
application level, the platform level, and the system level.

IMA design is made to provide high-assurance safety systems for avionic industry.
However, IMA requirements and development do not include security aspects, only
random hardware faults and involuntary design errors are considered without taking
into account failures due to malicious actions.

2.2 Modular high-assurance computer security

Security assurance levels: In computer security, the Common Criteria for Information
Technology Security (CC, [CC12]) standard states that owners of assets (something
valuable, e.g. a component in an aircraft or important data) place value on the assets.
The risk of a threat to an asset “depends on the likelihood of the threat being realised
and the impact on the assets when that threat is realised” [CC12, Part 1, p. 39].
Similar to the concept of safety assurance levels, an application which, under attack,
impairs assets of high value (e.g., confidentiality of top secret data, integrity of a
critical system) needs to provide a high security assurance and an application which,
under attack, impairs assets only of low value needs to provide a low security
assurance. Security assurance levels for individual components are especially used
for standards that typically analyze distributed systems such as [ARINC811] for
avionics and [ISA62443] for industrial automation.

Evaluation assurance levels: However, there is an additional difference in computer
security versus safety: safety assurance usually considers probabilities of faults (e.g.,
ARP 4761, ISO-26262), and in systems, combined and dependent probabilities (e.g.
“fault tree analysis”). In computer security, security risks are more “all or nothing”: for
example, once an attacker knows that access to an asset is possible by exploiting
two weaknesses successively, he/she will perform those actions in the required

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 4 of 63

order. In particular this also holds if a larger system is incorrectly specified, and
exploits against the larger system can be derived simply by analysis of the
specification. In [CC12, Part 1, p. 41] the sufficiency of the countermeasures against
a threat is thus shown by analysis in a document (the “Security Target”), and the
correctness of a product is shown by evaluation in a graded evaluation process. If a
product has undergone an extensive evaluation process, it gets assigned a high
evaluation assurance level (EAL). If a product only has undergone a more limited
evaluation process, it gets assigned a low evaluation assurance level.

Security policy and security policy levels: To build systems on consistent
specifications, a security policy is imposed upon a system. A security policy often
assigns security policy levels to elements of a system. A widely applied security
policy for confidentiality was Bell-LaPadula that assigned to each component a label
indicating a security level such as “public”, “classified”, “secret”, “top secret”, where
“public” is less than “classified”, “classified” less than “secret” and “secret” less than
“top secret”. On such a policy, each pair of components can be compared (a set with
such features is also called a “total order”). It allows implementing schemes such as
Bell-LaPadula, which (in simple terms) says that no-one is allowed to “read up” (read
information of a higher security level than his/her classification) or to “write down”
(write information to a lower security level than his/her classification). Bell-LaPadula
was also chosen as the reference model for the Orange Book [Dod83]. Similarly, the
Biba integrity policy can be seen as inverting the labels (“no write up”, “no read
down”).

Multi-level secure systems (MLS): An MLS system maintains multiple security policy
levels at the same time, often by assigning security labels to its components and
resources. Systems implementing the afore-mentioned Bell-LaPadula or Biba models
have been called MLS systems [And08]. A broader definition of the term MLS will be
discussed under “MLS versus MILS nowadays” below.

Operating systems: Much early work in high-assurance modular computer security
has been on secure operating systems [MP97]. The earliest uses of computers
involved programs directly operating on hardware, addressing individual memory
cells directly and exclusively using the entire hardware. However, maintainability
concerns lead to the development of a more modular usage, by installing an
operating system on the hardware. An operating system is a software system that (1)
simplifies access to underlying hardware by providing appropriate abstractions to
applications, (2) provides resource management (e.g. memory) and in particular is
able to allocate CPU(s) to applications (scheduling). Operating systems also can
provide networking or file system infrastructure to computers.

Security kernels: Many secure operating systems have used security kernels [MP97].
Security kernels have a small implementation, and thus can be more easily reviewed
than a complex operating system. Security kernels target integrity, availability, and
(usually a lesser concern in safety) confidentiality of applications and data and
impose a security policy on the system. Security kernels, for example Honeywell’s
Scomp [Fr83], supporting a security policy with multiple security policy levels had
usually been subsumed under “multi-level secure” (MLS) systems.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 5 of 63

In a security kernel, applications that are running at a certain security policy level
fixed for each application are called “single-level secure” (SLS). If multiple instance of
one SLS implementation are deployed in a system while each of those instances
processes a different security level it will lead to “multiple single-level secure” (MSLS)
components. Applications may implement security policies on completely different
features than security kernels, so policies provided by applications versus policies
provided by the separation kernel cannot always be directly compared. However, an
implicit requirement on security kernels is that their security assurance level is at
least as high as or higher than the highest security assurance level found in any
application.

Classification of applications in a security kernel: Unless otherwise specified, the
applications are SLS. Applications spanning multiple security policies are also MLS,
such as a downgrader. For a collection of classifications, see Table 1. The underlying
idea of such classification is that, from an information flow policy and resource
sharing viewpoint only MSLS and MLS components need to be verified [AFHOT06].

SLS: Single-Level
Secure Components
[Alv98, AFHOT06,
ZAV06]

A Single Level Secure Component is a component that every
time processes data of one security level.

MSLS: Multiple
Single-Level Secure
Component
[AFHOT06, ZAV06]

A Multiple Single-Level Secure Component is a special kind
of SLS component that processes data of multiple security
levels, but always maintains separations between classes of
data by exclusively processing only one security level during
its runtime instance. For example this separation can be
implemented by allowing access to a different security level
only when the component has rebooted with different
parameters. Also deploying multiple instances of one SLS
component processing different single security levels turn this
SLS component into an MSLS component.

Note: in [Alv98] this was restricted to temporal separation, “at
a single time-point, only handles information from one
component”. If such a single-level process is to be
implemented as untrusted process [Alv98], it can be
supplemented by an appropriate labelling and filtering of
messages. Moreover, in [Alv98] SLS and MSLS are
subsumed under “secure single-level process”.

MLS: Multi-Level
Secure Component
[Alv98, AFHOT06,
ZAV06]

A Multi-Level Secure Component is a component that
handles information of with different security levels
concurrently during one runtime instance. An example of an
MLS component is a separation kernel [MPT+12] or a
downgrader [ZAV06].

Table 1: Levels of components

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 6 of 63

Multiple independent levels of security (MILS): Encoding rich functionality into a
central component raises the question of how to design a security kernel that is itself
secure. Therefore, the functionality of security kernels has been broken up into a
more structured design. To differentiate such systems from “MLS” systems, the term
“MILS” (multiple independent levels of security) has been introduced. It describes
systems where different partitions hosting applications are either independent from
each other or connected by communication channels without an explicit hierarchical
ordering policy that would require attaching global security policy levels to each
partition.

The MILS architecture approach was popularized by John Rushby in 1981 ([Rus81],
“Design and Verification of Secure Systems”; at that time, Rushby did not use the
term MILS), which started a formalisation of MILS concepts. In his approach, the
system is designed as a distributed one and is based on a special kind of operating
system using a separation kernel (SK). He proposed that the security should be
achieved partly through physical separation, partly through the use of components
and partly through trusted functionalities performed within some components. The
purpose of the separation kernel is to allow such a “distributed” system to run within a
single processor. This is achieved by offering a very strong separation between the
different partitions except for very carefully controlled information flow between them.

The basic idea of MILS is to make the security-critical part of the system (i.e., SK)
small enough and with specific functionality so it can be certified at high assurance
levels. Traditional operating system services like device drivers, file system, etc. are
pulled out of the separation kernel and run in non-privileged mode; the only part of
the MILS system running in privileged mode is the SK. Safety and security policies
must be enforced at each level: by the separation kernel and by any other
component needed by the applications hosted in the partitions, but also by the
applications themselves. A key MILS objective is to enable the evaluation and
certification of a complex system to be modularized into a number of independent,
small evaluations.

MILS separation kernel security assurance characteristics: In practice, MILS
principles largely match the requirements imposed by users and producers of IMA
systems who, in addition to their IMA safety requirements, had an additional need for
security requirements.

In the MILS literature, explicit concerns for security assurance have been formulated
as “NEAT” [BBH+05, KW08, UV05], as follows:

 Non-bypassable: Policy enforcement functions cannot be circumvented.

 Evaluatable: Policy enforcement functions are small enough and simple

enough that proof of correctness is practical and affordable.

 Always Invoked: Policy enforcement functions are invoked each and every

time.

 Tamperproof: Policy enforcement functions and the data that configures them

cannot be modified without authorization.

Similar definitions exist elsewhere, e.g. “evaluatable”, “always invoked”,

“tamperproof” for reference monitors in [And72, p. 22].

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 7 of 63

Objectives and threats in MILS systems: In computer security, a threat is
characterized by some adverse action achieved by an attacker who attacks system
assets. The objectives of computer security are to counter threats in order to mitigate
the risk of a threat scenario.

Assets for MILS system and its components can be formulated in a straightforward

way:

 for each component itself,

o with the objectives of the preservation of its confidentiality, integrity, and

(possibly) availability,

 for each resource the component uses,

o with the objectives of the preservation of its confidentiality, integrity, and

(possibly) availability.

Threats can be named against the preservation of each the security attributes:

 for confidentiality, the threat is disclosure,

 for integrity, the threat is modification,

 for availability, the threat is depletion.

MLS versus MILS nowadays: Earlier in this section (“Multi-level secure systems

(MLS)”) a strict hierarchically ordered security policy based on security policy levels

had been discussed in the context of MLS. One insight gained by the MILS approach

was that several components on the same platform have safety and security

requirements that are just “different” in a wider sense. This insight had led to (1)

applying the term MLS also in that wider sense [DCS+04, LRP+11], and (2) to use

MILS to describe an architectural decomposition approach of an MLS system into

components [Alv98, AFHOT06, ZAF08]. For the rest of this document we use the

term MLS for systems based in the wider sense (1) and MILS for the architectural

decomposition approach (2).

2.3 Certification aspects

For IMA, DO-297 describes how to perform incremental certification [DO-297, WP08].
A case study on compositional certification of a system built on a separation kernel
using Common Criteria approach is given in [MPS+12].

The Open Group plans to develop a catalogue of components under the “Mils(TM)”
(this spelling) trademark that are backed by an Open Group Mils protection profile.
[RD07, Del10] list protection profiles for MILS components such as console system, a
network system and a file system, and suggest to specify the allocation of trust of
specific MILS components to a MILS Integration Protection Profile (MIPP); however,
these PPs are in draft form and are not public.

[SKPP] was a protection profile for separation kernels running on hardware.
Successful certification was achieved for the Green Hills Integrity system running on
PowerPC 750CXe PCI extension card [Gre08]. However, [SKPP] has been retracted
(“sunsetted”) by NSA in September 2011. The published rationale for the sunsetting
includes the considerations (1) that the NSA “will focus on specific government

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 8 of 63

systems using separation kernels rather than general OS evaluation” [Wis11], and
points [Hou11] to that (2) in the project “one box one wire” (OB1) “the underlying
commodity workstation (as part of a separation platform) does not appear to be
appropriate for SKPP certification due to its complexity” and that “the problem with
commodity desktop platforms comes down to the fact that too many developers and
vendors are interdependent” [SNAC10]. In balance, in the same document, it is
pointed out that “commodity workstations may present a completely acceptable risk
profile given available options” and the “findings in this document do not condemn
OB1 or the use of separation kernels in commodity workstations”, [SNAC10, also
discussed in NG12]. Note: concerning (1), this policy change does not apply to
Europe, concerning (2), our certification approach for the separation kernel
component does not include the hardware. That is, we assume that either the
hardware has been certified by the CC, or it is trusted to be reliable for other reasons,
e.g. by evidence from the hardware vendor that the hardware is suitable for the
security-critical purpose intended.

For partitioning communications systems (PCS), a protection profile draft exists
[Uch05] (available on demand from the author) which extends the PIFP (partitioned
information flow policy) from [SKPP] to distributed environments. The High
Assurance Security Kernel protection profile [HASK] also addresses distributed
communication systems in the style of a PCS.

2.4 Architectural decomposition and modelling

Since a long time research on security software architecture has emphasized
principles that also can be found in MILS systems. For example, discussing
mechanisms and techniques that define who may use or modify the information
stored in a computer, Saltzer and Schroeder have pointed out that the design shall
be kept “as simple and small as possible” [SS75, p. 1282], that “every access to
every object” shall be checked and that the design shall be open (not secret). As they
are widely known, we will revisit the [SS75] design principles and the extent to which
they are fulfilled later (in Section 5.2).

In the context of general research on software architecture, the MILS approach with
its strong emphasis on how a system is composed would subsumed under a
structural model which is characterized by components, connectors and additional
constraints [BCK03, SG95, ZAF06, ZAF08]. A MILS channel is a “connector” and the
additional constraint on the system (“other stuff” in [SG95]) is non-interference. For
component-connector type systems, [CBB+03, Section 4.7] proposes documentation
in the form of either Architecture Description Languages or UML. If UML is used,
[CBB+03, Section 4.7] discusses how to represent components and connectors in
UML and note that connectors can be either expressed as dependencies between a
component, and the ports/interfaces realized by the component or as components
themselves (p. 162). [ZAF06, ZAF08] discuss decomposition patterns for
components such as “product pattern”, “cascade pattern”, “feedback pattern” and
several instances of “aggregation patterns”.

The secure refinement of a downgrader with regards to information flow properties is
demonstrated by a paper-and-pencil argument in [CVdM09].

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 9 of 63

MILS architectures have been expressed in Architecture Analysis and Design
Language (AADL), verified by the REAL tool [GH08], and then been used for code
generation by [DPK10]. MILS components have been expressed in the LOTOS
language by [Alv98]. In [BBH+05], boundary flow modelling and secure UML are
listed as possible support to the system integrator. The software engineering tool
Specware for the breakup of a system has been used by [MWTG00]. [Cof11]
discusses identification of architecture design patterns on an IMA system.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 10 of 63

Chapter 3 MILS representation adopted by

EURO-MILS

This chapter presents the EURO-MILS project view of a MILS architecture template
using a top-down approach (Section 3.1), followed by a bottom-up approach giving
definitions of terms considered useful to describe the MILS architecture template
(Section 3.2). We conclude this chapter with an example (Section 3.3).

3.1 MILS architecture template

Figure 1 presents a high-level view of a MILS architecture template. This is the
template we adopt in the EURO-MILS project. The term “MILS architecture template”
names a template encompassing many possible MILS systems, whereas the term
“MILS architecture” (without “template”) refers to the architecture of the
implementation of a concrete MILS system.

From the outside (i.e., external world, which could be a larger system comprising the
MILS system), the MILS system is seen as a system that handles information from
multiple components with different security and safety levels concurrently, in other
words, an MLS system. The MILS system’s internal architecture is not visible from
the point of view of the infrastructure around the MILS system (it is like a black box).

Thus, a MILS system can be used as a base to build a system that has different
safety/security requirements for different components, called an MLS system.

In the rest of the section, we are discussing in more details each part shown in Figure
1.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 11 of 63

Figure 1: MILS architecture template (components in dashed lines are optional).

3.1.1 MILS system

We define a MILS system as a system where its MILS architecture is visible to the
person composing the MILS system from its components, i.e., the system integrator.

A MILS system consists of components interacting with each other. We define three
main components in a MILS system:

 MILS core (Section 3.1.2)

 MILS platform (Section 3.1.3)

 Partition (Section 3.1.4)

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 12 of 63

3.1.2 MILS core

Figure 2: MILS architecture template: MILS core

The only goal of the MILS core is to provide separated partitions with controlled
information flow between them. Thus, the MILS core provides the primary security
functionality of a MILS system. The MILS core (Figure 2) consists of components that
implement and enforce the separation both in space and time: separation-supporting
hardware and the separation kernel. Depending on use-case implementation, the
MILS core may also include hardware critical devices and software for these
hardware devices.

 Separation-supporting hardware.

This hardware consists of implementation (gates in silicon) and
configuration/initialization.

The hardware shall support separation, e.g. CPU with different privilege modes,
MMU, memory bus, IOMMU. Hardware consists of interconnected components. A
hardware component’s interactions with other hardware components can be
restrained by a guard. For example

o Let’s consider a CPU, memory, and MMU. Assume the CPU is working in a
user mode. In this mode, the CPU can only access memory if the access
has been permitted by the MMU. Thus, the MMU is the guard for the CPU.

o Let’s consider a device, memory, and IOMMU. Assume the device
accesses memory as a DMA. In this case, DMA access will happen only if
the IOMMU permits it. Thus, the IOMMU is the guard for this device.

Configuration/initialization is software that performs hardware-specific initialization
and configuration of hardware, e.g. firmware and/or bootloader and/or stand-
alone software.

 Separation kernel.

The separation kernel guarantees separation and controlled information flow by
enforcing the security policy.

Examples of enforced security polices are

o resource allocation policy (e.g. allocation of CPU time and memory to
partitions),

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 13 of 63

o access control policy (e.g. access rights to objects under control of
separation kernels),

o information flow policy (e.g. communication rights of partitions).

Separation kernel functionality relies on the hardware supporting functionality.

A separation kernel may further configure hardware with the respect to a given
security policy. For example, it configures guards, creates page tables and sets
MMUs.

 Critical hardware parts/devices.

These devices can bypass the enforcement mechanisms of the separation kernel.
For example, DMA capable devices without guards (i.e. without IOMMU) can
bypass the separation kernel. To have such critical devices is optional. However,
if such device is present, its associated software acting as a guard for it must be
also present in the architecture.

 Software for critical hardware parts/devices.

This software is the guard for a critical device. It provides an API to partitions to
work with the device. Therefore, this software implements and enforces part of the
separation. We assume that if the software correctly works with the device, the
device will not bypass the separation kernel security policies.

3.1.3 MILS platform

Figure 3: MILS architecture template: MILS platform

The MILS platform (Figure 3) consists of the MILS core and optional software and/or
hardware components that provide secondary security functionalities and do not
contribute to the enforcing of separation. These are security services that can be
used based on the use-case needs.

These optional components are part of the platform because they

 contribute to the system security, however, they do not enforce separation
between partitions,

 can be used by several partitions,

 may be realized by different implementations for a given optional security service
(use-case dependent),

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 14 of 63

 might need a tighter integration with separation kernel or hardware.

Examples of such optional components are:

o security audit (Section 3.1.5),

o crypto functionality shared between partitions,

o software implementing virtualization of devices (e.g., multiplexing of
accesses for the network interface, shared graphics or shared audio).

3.1.4 Partition

A partition is a unit of the separation created by the MILS core. A partition will get
resources as specified in a security policy and enforced by the MILS core. A partition
is a container that hosts executable and/or non-executable data. An executable in the
partition can use allocated resources, communicate with the MILS core, and
communicate with other partitions under control of the MILS core if such
communication is explicitly allowed by the security policy.

Partitions also may include hardware that is not separation-relevant. For example, an
FPGA doing cryptography can be under full control of a single partition.

3.1.5 Security audit

Security audit, if it exists, is part of the MILS platform. Security audit is the trustworthy
gathering of audit records. The audit records can be generated by the MILS core
components or applications hosted by partitions.

A security audit component processes incoming data by adding trustworthy security
related information such as time stamps and source of audit record. It can be local
and managed by the audit component but also exported to an external media, this
aspect being use-case implementation dependent.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 15 of 63

3.1.6 Middleware

Figure 4: MILS architecture template with middleware: components in dashed lines are optional.

The term middleware is generally not well defined and its meaning always depends
on the context.

We define middleware as a set of services that are used by several partitions.
Middleware does not contribute to the separation enforced by the MILS platform and
is itself under control of the MILS platform, thus it is a unit (a partition) under control
of the separation kernel. The system integrator of a MILS platform for a MILS system
can decide to have middleware or not. Middleware can be a partition providing some
functionality for several other partitions or be a part of a partition (e.g. libraries, run-
time environments guest operating systems). For instance, the habitat of middleware
is also restricted to be within a partition in [Win13, p. 3, Figure 2].

By introducing the concept of the middleware, we acknowledge that it can be useful
to express that some partitions can be part of a bigger function (see Figure 4), and
thus, need common infrastructure, which is not related to the MILS core or the MILS
platform. In the generic MILS architecture template, we agreed to not use the term
middleware to avoid any misunderstanding because it depends on the use-case
where a MILS system is employed.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 16 of 63

3.2 MILS terminology

3.2.1 Component

A component is a term to describe the decomposition of a (in general, any) system
into meaningful self-contained parts. For example, a (yet to be defined) MILS system
consists of components. In general, components may be implemented by (1)
hardware, (2) software, or (3) a combination of hardware and software [CBB+03, DO-
297]. A component provides a given functionality that can be configured according to
a given use-case.

3.2.2 Resource

A resource is anything (processor such as a CPU or a processing core, memory,
software, data, network, etc.) internally used or exported by a component. A resource
may be physical (a hardware device) or logical (a piece of information). A resource
may be shared by multiple components or be dedicated to a specific component.

Exported resources are those resources to which an explicit reference is possible via
a component interface, e.g., the programming or configuration interface. Internal
resources are those resources used exclusively by the component, and which have
no explicit reference via a component interface.

For example, internal resources of an operating system usually comprise physical
memory space, I/O memory space, the set of processors the applications can run on,
allocated processor time for each processor (at least, when the operating system is a
real-time operating system), and interrupts. A resource commonly exported by an
operating system is a “file”. The operating system enforces an access control policy
on the file. Internally, it uses memory to export the file. Another exported resource
exported by an operating system is time slices, and the operating system enforces a
scheduling policy (a resource management policy). Internally, the operating system
uses CPU time that itself has access to.

3.2.3 Communication object

A communication object is an exported resource provided by a component. It can be
shared between components. Communication objects are used by components to
communicate between them.

3.2.4 Security policy

A security policy is a set of rules to be enforced by a component. Examples of
security policies are:

- Resource allocation policy (Section 3.2.5)

- Access control policy (Section 3.2.6)

- Information flow policy (Section 3.2.7)

In our context, all three policies describe rules for granting or denying some
“treatment” of exported resources, with “treatment” of a resource standing for to be
able to eventually “read”, “write”, or “execute” the exported resource. The distinction

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 17 of 63

between the resource allocation policy and the access control policy is which
interface the rules for access are applied on.

The term information flow policy has more than one usage, the most simple one is to
use it as an umbrella term for “access control policy” and “resource allocation policy”
combined. For most components, in the scope of this document, we adopt this simple
interpretation, making these three security policies closely related. We decided not to
merge the three policies in order to allow a precise characterization of components
where needed later. Moreover, a more “complicated” usage of the term “information
flow policy” will be encountered when the separation kernel is described (Section
3.2.13).

An operation might be governed by several policies: we consider both operations of
“opening a file” and “reading/writing” to be involving access control to the file,
however, the operation, depending on the implementation, could also be governed by
a “resource allocation policy” such as the exclusive ownership of memory for the file
descriptor to the component opening it. Similarly, the virtualization of a network
component could comprise “access control” to Single Root I/O virtual functions and
“resource allocation” if some of the virtual functions, after proper reinitialization, are
assigned to different components during different periods of a time cycle (say 20
milliseconds each 100 milliseconds).

Note: We have observed that making the distinction between resource allocation
policy and access control policy mixes concerns of interface (functional requirements)
into policy requirements. However, the interface available to an attacker defines the
possible malicious operations of the attacker. Thus, making the distinction allows to
differentiate attacks based on resource depletion (attacking the resource allocation
policy defined below) and attacks against confidentiality/integrity of the resources
(attacks against the access control policy defined below).

A security policy can be dependent on system state, yet be bounded. For example,
writing to a file may depend on that, statically, access to the file is allowed, and that,
dynamically, a file descriptor is available after “opening” the file. Sometimes, in a
usage that, after discussion, we do not follow in this document, the term “resource
allocation” is used for initial establishment of a dynamic state, e.g. “opening a file”
would be considered “resource allocation”, whereas “reading/writing” the file would be
governed by access control. For this document, as outlined above, we consider both
operations of “opening a file” and “reading/writing” to be involving access control to
the file.

When describing the protection of assets in the system, one can assume that every
action that is eventually possible by configuration will be used by an attacker, even if
some initialization of the state is needed. Thus, the static configuration describes a
bound for the behaviour that is dynamically possible. Section 4.3 further discusses
system configuration.

3.2.5 Resource allocation policy

A component’s resource allocation policy acts on the component’s interface used to
manage exported resources. This interface is characterized by that a request for a
resource is made without knowing in advance how the resource is “named” or

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 18 of 63

“addressed”. The request is made for a quantity of the resource, and then the
component decides whether to grant or deny the request to export that resource in
the desired quantity. The resource allocation policy defines which of the component’s
resources are kept internal to the component and which are exported to which other
components. When a resource is exported to more than one other component, the
resource is shared. A resource allocation policy can be in the “space” domain, when
resources can be used simultaneously but are kept in different spatial (e.g. memory)
locations or in the “time” domain, where resources are used sequentially, but kept in
different time slices. An example for resource allocation in the “time” domain is the
allocation of a CPU to a component for a limited period of time.

3.2.6 Access control policy

A component’s access control policy acts on the component’s interface used to
manage exported resources. In this respect it is identical to the aforementioned
resource allocation policy (Section 3.2.5). However, the interface is characterized by
that a request to the resource includes an explicit reference to the resource (e.g. the
resource’s name or a numerical identifier). Identically to the aforementioned resource
allocation policy (Section 3.2.5), the access control policy defines which of the
component’s resources are kept internal to the component and which are exported to
which other components. When a resource is exported to more than one other
component, the resource is shared. The access control policy is in the “space”
domain.

Note: as observed in Section 3.2.4, the resource allocation policy (Section 3.2.5) and
the access control policy (this section) differ in the interface offered on the exported
resources and they differ in the threats (exhaustion versus violation of
integrity/confidentiality). For resource sharing, the threats a shared resource is
exposed to are different: a resource shared under a resource allocation policy, e.g. a
memory allocator that can be used by different components, can be exhausted
(“denial of service”), but a resource shared by an access control policy, e.g. a piece
of memory at a fixed address that is marked as accessible to several components,
cannot.

3.2.7 Information flow policy

The term information flow policy has more than one usage,

(1) the most simple one is to use it as an umbrella term for “access control
policy” and “resource allocation policy” combined or

(2) to express policies where pieces of information (messages) are written to
one or several communication objects(s) by a sender and subsequently these
messages are read from the communication object(s) by a receiver. Such
policies may include rules based

(2a) on the sender/receiver of the messages and/or

(2b) on the content of these messages.

Note: for most components, interpretation (1) is used. (2a) will be used in the context
of a separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 19 of 63

security gateway (discussed as an example in Section 3.3). An information flow
policy in the sense of (2a) is either explicit, based on identities of components
between which information flow is allowed, or implicit, as unambiguously defined by
the resource allocation policy and access control policy.

3.2.8 Configuration

The configuration of a component contains the component’s identity, and it defines
any security policy (access control policy, resource allocation policy, information flow
policy) enforced by the component. An information flow policy configuration also may
be implicitly configured by resource allocation policy configuration and access control
policy configuration.

3.2.9 Application

An application is one or more executable(s).

3.2.10 Domain

A domain (or “security domain”) is a unit of separation created and maintained by any
MILS component, for example by an application (Section 3.2.9), a function (Section
3.2.12), or the MILS core (Section 3.2.14), which is enforcing a security policy on
exported resources.

In particular, a domain is a “space” domain, if exported resources can be used
simultaneously but are kept in different spatial (e.g. memory) locations. A domain is a
“time” domain, if exported resources are used sequentially, but kept in different time
slices.

3.2.11 Partition

A partition is a component that serves to encapsulate application(s) and/or data.
Thus, the content of a partition is application(s) and possibly other data. A partition is
a unit of separation with respect to

 resource allocation in the space and time domains,

 an access control policy and an information flow policy in the space domain.

In a MILS system, partitions are created and maintained by the MILS core (see
definitions below) based on security policies defined for a given use-case.

Note: this bottom-up definition of a partition has a different emphasis than the
previous top-down characterization given in Section 3.1.4, but does not contradict it.

A partition is a domain, but a domain is not necessarily a partition.

3.2.12 Function

A function is a logical group of partitions for achieving common objectives. The
implied partitions may be connected using information flows.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 20 of 63

3.2.13 Separation kernel

A separation kernel is a component that enforces a resource allocation policy and an
access control policy on its exported resources (partition, resources allocated to a
partition, communication objects). Communication objects allow for controlled
information flow between partitions. A separation kernel may have an explicit or an
implicit information flow policy on its partitions (see definition of information flow
policy for details).

The separation kernel uses separation-supporting hardware to provide the separation
between partitions in a MILS core.

Examples:

 A resource allocation policy might assign a certain amount of time, for
example 20 milliseconds periodically every 100 milliseconds, of the
resource CPU access to a certain partition, for example partition number 5.

 An access control policy might assign communication object C as writable
to partition A and readable to partition B, defining an implicit information
flow policy from A to B.

 An explicit information flow policy for a separation kernel could consist of
the specification that only partition P via whatever interface may send
information to partition Q.

3.2.14 MILS core

By MILS core we refer to the minimal set of components needed for separation of
partitions on a MILS platform. The only goal of the MILS core is to provide separated
partitions with controlled information flow between them. Thus, the MILS core
provides the primary security functionality of a MILS system. The MILS core (Figure
2) consists of components that implement and enforce the separation both in space
and time.

3.2.15 MILS platform

A MILS platform consists of the MILS core and optional software and/or hardware
components that provide secondary security functionalities and do not contribute to
the enforcing of separation.

3.2.16 MILS system

A MILS system is a concrete deployment of a MILS platform with a defined set of
partitions.

3.2.17 MLS system

An MLS system is a system with different security requirements for different
components. It can be implemented by a MILS system.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 21 of 63

3.2.18 Terminology rationale

The term component is a standard term for the description of software architectures
(see also Section 2.4). On what can be a component we note that some
presentations of MILS systems such as [UV05] come with a fixed number of layers.
Others argue that, in principle, components themselves can contain MILS systems,
allowing recursive compositions [Del12a, p. 56].

Resource: In software interface documentation, when specifying a component, we
can describe what resources the component provides and what resources the
component uses [CBB+03, p. 229]. In [SKPP, p. 21] resources that are provided by
the component are called “external resources” whereas resources that are required
by the component are called “internal resources”. From a resource usage
perspective, resources can either be hardware or resources provided by other
components as in [Tan07, p. 432] where “a resource can be a hardware device (e.g.
tape drive) or a piece of information (e.g. a locked record in a database)” or “Any
element of a data processing system needed to perform required operations; for
example: storage devices, input/output units, one or more processing units, data files,
and programs.” [ANS01]. The use of “resource” for describing hardware is also
established in virtualization [PG74]. We have not found a stand-alone definition of the
term “resource” in the MILS literature, but for separation kernels the hardware notion
it appears close to [AFHOT06, p. 3] where the term is not explicitly defined. In the
context of a description of a separation kernel, the term “shared resources” is
expanded to “microprocessors, system registers etc.” whereas the “piece of
information” aspect appears to be addressed in [Rus08a, p. 10].

In [Rus08a], our resource allocation policy, access control policy, and information
flow policy are equated to a “resource sharing” + (information flow) “policy”. Also
[SKPP] does not have any notion of an access control policy. We prefer to keep the
three terms, because it simplifies mapping to [CC12], where the resource allocation
policy can be mapped to the functional requirement class FRU_RSA, the access
control policy can be mapped to FDP_ACF, and the information flow policy can be
mapped to FDP_IFF. That resource sharing implies information flows and that
conversely resource sharing analysis supports information flow analysis is widely
accepted [Kem83, AFOB+12]. Resource allocation policies versus access control list-
based policies, e.g. the need to maintain resource exhaustion quantifiers to enforce
resource allocation quotas, are discussed in [Ste91, p. 228].

Our definition of application is based on [ANS01]. It avoids any notion of user, as
mentioning the term “user” at an early stage of the introduction could create the
misunderstanding that users are limited to human beings using the system
interactively.

The use of the term domain for environments where a security policy is imposed by a
component can be found, for example, in [Lam71]. The same paper also shows (p.
428) examples for hardware-imposed domains (supervisor and software states) and
software (user environments in an operating system).

Our definition of partition is close to [AFHOT06, p. 2] where a partition is defined as
“a collection of data objects, code and system resources”. [SKPP, p. 20] points out

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 22 of 63

that the term is motivated from its use in mathematics, where a partition of a set A is
used to describe the split of a set into disjoint subsets, so that each element of A
belongs to exactly one of the subsets.

Our definition of function (logical group of partitions for achieving common objectives)
is what in [DO-297] is called an application.

MILS platform + partitions content = MILS system: this is emulated after IMA, where
an IMA platform + partitions give an IMA system.

MLS system: We identify a MLS system with a system having different security
requirements for different components. In safety, the term “mixed criticality” is often
used for this. As discussed in Section 2.2, historically, there exists also a more
restrictive usage, where a MLS system has a transitive security policy [BDR+08]. In
line with many others (e.g. [DCS+04, LRP+11]), we do not adopt that more strict
definition.

3.3 Example of a MILS system

In this section the terminology of Section 3.2 is applied to a concrete MILS system
described in [MPT+12]. The paper explains a gateway architecture implemented
using the MILS principles for the purpose of controlling the content of the information
flow between the hosted applications. Those applications process data of different
security classification logically grouped into a green domain and a brown domain. As
foundation, the gateway uses a separation kernel, which provides the functionality of
partitioning and controlled non-bypassable information flow. Thus, the separation
kernel applies a Resource Allocation Policy and maintains an Access Control Policy
and a basic Information Flow Policy, defining the partitions that are allowed to
communicate among each other. However, this Information Flow Policy of the
separation kernel is not able to ensure additional constraints on content of the data
that is transferred using the communication objects. The gateway enhances this
Information Flow Policy by this capability using the available foundations.

Figure 5: Gateway architecture of a MILS system [MPT+12, Figure 3].

 Applying a black-box view from the outside onto the system in Figure 5, the
system appears as a MLS system, since it processes data belonging to the
green domain and data belonging to the brown domain concurrently.

 Having a closer look into the architecture of the system, the system is a MILS
system, since it uses a MILS platform (the Separation Kernel-based Operating
System) and partitions identified by the blue dotted lines in Figure 5.

 The MILS platform comprises the Separation Kernel-based Operating System
(the MILS core) plus the Auditing Module mentioned in [MPT+12, Section II.D].

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 23 of 63

 The MILS core is the Separation Kernel-based Operation System [MPT+12,
Section II.D] plus some unspecified hardware (that is not further described in
[MPT+12]) but used and managed by this separation kernel.

 As Separation Kernel the example uses PikeOS [MPT+12, Section II.D]. This
separation kernel enforces the Resource Allocation Policy and Access Control
Policy to form partitions (the blue dotted boxes) based on the available
resources, such as memory, CPU cores and the program binaries. The
separation kernel exports some of those resources for building communication
objects. By controlling the accesses of the partitions to those exported
resources the separation kernel creates and applies a basic Information Flow
Policy. Examples for exported resources are: ARINC 653 ports or file
providers [MPT+12, Section IV.C].

 Partitions are provided by the separation kernel. The gateway relies on this
crucial element for implementing its function.

 Within the partitions the example executes several Applications, which is the
content of the six blue dotted boxes in Figure 5. The paper specifies
applications running within the “Gateway Outbound Partition” and within the
“Gateway Inbound Partition”. Other applications are the Brown Applications
and Green Applications.

 As components the modules of [MPT+12, Section IV.II], such as the modules
with specific functionality for filtering packets (named “Viewer Module”),
reading/writing filtered packets across partitions (“Border-crossing Module”) or
making decisions on packet routing (“Routing Module”) can be identified. The
paper does not explicitly identify hardware; however it is assumed that the
system contains at least a CPU, which again is a (hardware) component.

 The purpose of the gateway is to enhance the basic Information Flow Policy of
the Separation Kernel by the ability of controlling the content of the information
flow (unidirectionally) [MPT+12, Section IV.I] and [MPT+12, Section V]. For
achieving this logical function, the gateway uses the collaboration of two
partitions: the Gateway Outbound Partition and the Gateway Inbound Partition.
Other functions are given by the applications located inside the two security
domains, which “can comprise one or more partitions” [MPT+12, Section IV].
Functions are depicted as a black solid boxes in Figure 5.

 The system contains configurations of different applications:

o The configuration of the gateway for defining the enhanced Information
Flow Policy.

o The configuration of the separation kernel for defining the Resource
Allocation Policy and the Access Control Policy for the gateway
components [MPT+12, Section IV.II]. [MPT+12, Section IV.III] forces
the system integration to provide “enough buffer space” for the exported
communication objects. [MPT+12, Section IV.IV] discusses the
scheduling configuration of the system. Non-bypassability of the
gateway’s enhanced Information Flow Policy is ensured by the
separation kernel.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 24 of 63

Chapter 4 MILS main components

The following characterization of components does not include all MILS components,
but rather discusses the security properties of MILS components that are common to
MILS platforms and occur frequently. We begin with software components (Section
4.1), followed by hardware components (Section 4.2) and discuss the configuration of
MILS systems (Section 4.3).

4.1 Software components

4.1.1 Separation kernel

A concise characterization of a “separation kernel” already has been given in Section
3.2.13. In this section, we look at the “separation kernel” as a MILS software
component.

4.1.1.1 Services

4.1.1.1.1 Pictorial view

Figure 6: Generic picture of a separation kernel with several partitions.

The pictorial view is the most commonly found way to describe the services of a
separation kernel. Figure 6 shows that each partition is under control of the
separation kernel, in the sense that the separation kernel enforces the system
configuration upon all their communication and resource requests in a non-
bypassable way, while it is not inspecting or protecting what happens within the
partition itself. For example, if a partition is authorized to communicate over a
network and to use the HTTP protocol, the SK will not protect the application against
infection by a virus introduced into the HTTP payload.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 25 of 63

4.1.1.1.2 Classical approach

In some of the early work such as [BBH+05, UV05, AFHOT06] a strong emphasis on
the implementation of information flow and its absence has been taken.

“The only tasks assigned to a MILS separation kernel are the partitioning of
processes and failure containment. Consequently, we can represent the safety and
security requirements for a separation kernel by four simple foundational policies:

• Data Isolation: Information in a partition is accessible only by code running in that
partition. Private data remains private.

• Control of Information Flow: Information flow among partitions is from an
authenticated source to authenticated recipients. The source of information is
authenticated to the recipient. Information goes only where intended.

• Resource Sanitization: Usage of the microprocessor and other hardware, such as
networking hardware, cannot be used as covert channels to leak information.

• Fault Isolation: A failure in one partition is prohibited from cascading to any other
partition. Failure detection, containment, and recovery are performed locally” [UV05].

Similar formulations are found in an early draft of an SKPP predecessor (defining
“data isolation”, “control of information flow”, “resource sanitization”) [WOM02].

4.1.1.1.3 Policy-based description

For convenience, we repeat our definition from Section 3.2.13.

“A separation kernel is a component that enforces a resource allocation policy and an
access control policy on its exported resources (partition, resources allocated to a
partition, communication objects). Communication objects allow for controlled
information flow between partitions. A separation kernel may have an explicit or an
implicit information flow policy on its partitions (see definition of information flow
policy for details).

The separation kernel uses separation-supporting hardware to provide the separation
between partitions in a MILS core.”

We think this description with an emphasis on policies fits better in a systematic
exposition. A description based on policies has also been adopted in the “MILS
constitution” [Rus08a], another attempt to systematically explain MILS.

This characterization is isomorphic to the characterization of Section 4.1.1.1.2:
“resource sanitization” and “damage limitation policies” are implied by the
requirement of complete information flow control. “Data isolation” is the default of the
access control policy, resource allocation policy and information flow policy on
internal resources, whereas “control of information flow” addresses the access
control policy, resource allocation policy and information flow policy on external
resources.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 26 of 63

4.1.1.1.4 Description of functionality grouped according to where separation is made
(space/time)

In the following paragraphs, we present the approach taken in [TBF13] then we
comment it versus previous sections (i.e., classical approach and policy-based
description).

Separation in space: Applications can be hosted in different partitions. Partitions get
assigned memory resources (i.e. space). In this way, the separation kernel enforces
its configuration: that is, access control on partition content, per-partition provision of
physical memory space and I/O memory space. By confining applications into
partitions, the separation kernel enforces that these applications can affect neither
applications in other partitions nor the separation kernel itself.

Separation in time: Applications can be hosted in different partitions. Partitions get
assigned CPU time (i.e. time windows). In this way, the separation kernel enforces its
configuration: that is the allocation of a predefined amount of the CPUs’ time to
partitions. Several partitions can share the same time window. On a partition switch
CPUs will be reused. The separation kernel enforces that no residual information is in
CPU registers or memory caches according to the configuration. The separation
kernel assigns a priority to every subject to allow priority based scheduling within one
time window.

Provision and management of communication objects: Applications hosted in
different partitions can get assigned a set of communication objects under control of
the separation kernel. A communication object is an object exposed to one or
multiple partitions with access rights as defined in the configuration data, thus
allowing communication between partitions.

Separation kernel self-protection and accuracy of security functionality:
Separation kernel self-protection and accuracy of functionality supports reaching and
keeping a safe and secure state of the MILS system. The separation kernel statically
assigns automatic invocations of error handling functions to recover from or respond
to error conditions.

Again, this characterization is isomorphic to the characterization of Section 4.1.1.1.2
and Section 4.1.1.1.3. Like the one of Section 4.1.1.1.2, it is optimized to be stand-
alone and concrete. It splits up the data isolation of Section 4.1.1.1.2 of into
“separation in time” and “separation in space”. The “resource sanitization” of Section
4.1.1.1.2 is subsumed under “separation in time”. “Control of information flow” is
represented by “provision and management of communication objects”. “Fault
isolation” is subsumed under “separation in space” and “self-protection”.

Also in the SKPP, while claimed as security functional requirements, “fault
containment” and “resource sanitization” are not listed explicitly in the introductory
high-level characterization of “core functional requirements” [SKPP, p. 25].

4.1.1.1.5 Virtualization services on top of separation kernels

Virtualization is not a necessary part of separation kernels. However, because many
separation kernel deployments provide support for virtualization services, the concept

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 27 of 63

is described here. We discuss these concepts in form of tables (Table 2 and Table 3),
juxtaposing a generic description of virtualization and the analogous or differing
complement in a separation kernel.

A virtual machine (VM) consists of software that imitates a physical hardware
machine. The virtual machine will for example give the illusion of a physical CPU and
physical memory to an operating system that is running in it. An operating system
running in a virtualization environment is called “guest”. In the MILS context, a
virtualized operating system is a special case of an application (the term “application”
was defined in Section 3.2.9).

A virtual machine monitor (VMM), also called a “host” (for type 2 VMMs) or
“hypervisor” (for type 1 VMMs, see Table 2 for type 1 and 2 explanation), is the
software managing virtual machines.

Requirements:

Table 2 lists virtualization requirements in general and their fulfilment or non-
fulfilment by a MILS separation kernel.

Virtualization Requirement in General Virtualization Requirement
Compliance in a MILS Separation
Kernel

An operating system running on a VMM
is characterized by:

(1) the resource control property, that the
VMM is in complete control of system
resources, [PG74]

Concerning (1), the resource control
property: In MILS systems, the resource
control property is implemented by the
separation kernel via its security policies.

An operating system running on a VMM
is characterized by:

(2) the sufficiency property, that a VMM
provides an environment for the
operating system which is sufficient for
running it.

Concerning (2), the sufficiency property:
The sufficiency property means that the
API provided by a MILS system to its
applications does not have to provide the
same API as in virtualization of a
machine, e.g. for a MILS system it is
sufficient to provide communication
channels instead of, for example, a
network interface, but it need not
necessarily provide a full replica of
another machine. In a VMM, the API is
the full CPU instruction set. When under
a VMM, a VM attempts to execute an
instruction that only runs in supervisor
mode of CPU, VMM intercepts this
attempt and VMM tries to emulate the
instruction as faithfully as possible. In a
separation kernel, when an application in

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 28 of 63

Virtualization Requirement in General Virtualization Requirement
Compliance in a MILS Separation
Kernel

a partition executes an instruction that
only runs in supervisor mode, the SK
traps it, and usually its execution is
rejected. Instead, the separation kernel
offers explicit additional interfaces to
allow partitions to do certain things (e.g.
create new thread within a partition, use
a new address space within a partition,
access a shared resource etc.). The
main difference would be that VMM tries
to create virtual environment but SK
does not.

An operating system running on a VMM
is characterized by:

(3) the isolation property, that is
applications running in different VMs do
not interfere with each other

Concerning (3), the isolation property:
this is provided by the fact that the
separation kernel enforces temporal and
spatial separation properties on
applications.

An operating systems running on a VMM
is characterized by:

(4) the efficiency property that programs
run on VMM with only minor decreases
in speed [PG74]

Concerning (4), the efficiency property:
While, in practice, the efficiency property
is probably fulfilled by most MILS
systems, the emphasis is less on good
average application performance but
rather on guaranteed real-time worst
case execution time bounds.

(5) While virtualization has traditionally
been focusing on the isolation of virtual
machines hosted by the same hardware
platform, controlled resource sharing,
such as for example a common storage,
can also be a desired feature [Kar05].

Concerning (5) controlled resource
sharing: it is well supported by
communication objects.

Table 2: Virtualization requirements: in general and their compliance with MILS SK

(Note: instead of the sufficiency property and isolation property [PG74] gives the
stronger equivalence property, that a VMM provides an environment for programs
which is essentially identical with the original machine, except for timing effects.
Our definition is broader to allow for paravirtualization, see below.)

Implementation:

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 29 of 63

Table 3 lists virtualization implementation characteristics in general and their
applicability or non-applicability in a MILS separation kernel.

Virtualization Implementation
Characteristics (of an Operating
System) in General

Virtualization Implementation
Characteristics (of a MILS application)
in a MILS Separation Kernel

(1) Since [Gol73], it is customary to
distinguish between Type 1 VMMs that
run on bare-metal hardware (e.g.
Microsoft’s Hyper-V, IBM’s System z
Processor Resource/System Manager
(PR/SM), bare-metal version of VMWare)
and Type 2 VMMs that run on top of
another operating system (e.g.
VirtualBox, user-space version of
VMWare). An extensive list of VMMs and
their classification can be found at
[Wik13].

Concerning (1), the VMM type: MILS
platforms are always of Type 1. Contrary
to virtualization techniques where
safety/security requirements do not
matter, in MILS systems, there is an
additional emphasis on deployability in
domains with safety/security
requirements, e.g. that a MILS system, is
“NEAT”, which is not necessary for
VMMs in general. For example, if
safety/security requirements are not a
primary concern, VMMs are not only
provided by stand-alone systems but
also running on COTS operating systems
(e.g. a VirtualBox running a Windows on
a Linux or vice-versa).

(2) A virtual machine can be run as an
emulator, intercepting all instructions
from the operating system running on it,
this comes at a high performance price
[PG74].

Concerning (2), running a virtual
machine as emulation: while the
exception, this can be done by a
separation kernel, e.g. to run a legacy
system designed for slower hardware, so
that the performance cost is acceptable.

(3) Alternative to (2), a virtual machine
can be run in a way that it runs an
operating system directly on a CPU and
the VMM only intercepts the operating
system when needed, that is when
invoked either by a trap coming from the
application or from elsewhere (e.g. a
system timer interrupt).

Concerning (3), running a virtual
machine directly on hardware: also MILS
applications can be run by a separation
kernel directly on a CPU, and the
separation kernel intercepts the MILS
application only when certain traps arrive
(e.g. a system timer interrupt).

(4) Alternative to (2) and (3), hardware
virtualization support (also known as full-
virtualisation) introduced by AMD and
Intel in the mid-2000s ensures that all
instructions that need to be intercepted
can be trapped and it increases
efficiency, by providing support for per-

Concerning (4), hardware support: a
separation kernel can make good use of
hardware support for virtualization when
the running application is an operating
system, simplifying page table
management.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 30 of 63

Virtualization Implementation
Characteristics (of an Operating
System) in General

Virtualization Implementation
Characteristics (of a MILS application)
in a MILS Separation Kernel

VM page tables.

(5) Paravirtualization is a technique
allowing to adapt the VM operating
system and, if needed, the applications
running on such VM to avoid instructions
that are either inefficient or, on some
architectures cannot be trapped (see
“Note on imperfect virtualization support
on hardware” below). Recall that, as
applications can comprise virtualized
operating systems, invocations of
instructions to be run in supervisor mode
is frequent. Paravirtualization replaces
these supervisor mode instructions.
Paravirtualization allows applications to
run more efficiently or allows running
applications that otherwise would not be
running at all.

Concerning (5), paravirtualization: the
technique of paravirtualization also can
be applied to applications running within
a partition of a separation kernel, e.g. a
paravirtualized Linux operating system,
that, in the MILS context, is just an
application. The paravirtualization
technique may enable applications
otherwise not runnable on the separation
kernel to run on the separation kernel, or
make them more performant. From a
security point of view, paravirtualization
does not add any value to the security
properties of a MILS system but it
introduces a threat vector of attacks,
which needs to be taken into account
when a MILS system is configured.

Table 3: Virtualization implementation: in general and compliance with MILS SK

Note on imperfect virtualization support on hardware: Most modern CPUs enable
to restrict the privileges of untrusted applications (“supervisor” versus “user” mode).
This feature to restrict user applications to “user” mode is fundamental to general-
purpose operating system design [Tan07, p. 1]. Integrity is a design goal of general-
purpose operating systems and their CPUs, but the complete control of information
flow channels is not necessarily a design goal neither for general-purpose operating
systems nor CPUs they run on.

For example, [AA06, AFOB+12 (p. 153), RI00] and others have noted that, on some
ia32/ia64 architectures, such as the Pentium, some instructions expose privileged
state (such as reading out the global descriptor tables). Information flow can be
mitigated if data, e.g. in global descriptor tables, is kept static. A second type of
problem occurs when user applications are simply denied operations, but the CPU
does not trigger any trap for the VMM to handle [AFOB+12, p. 149] also discusses
similar caveats for another processor, the Cell Broadband Engine Architecture
(CBEA) processor developed by Sony, Toshiba, and IBM that consists of a POWER
architecture core and coprocessors elements for e.g. 3D multimedia acceleration.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 31 of 63

4.1.1.2 Architecture

A separation kernel uses the interfaces of the hardware components it has been
assigned in the MILS system in order to provide the services described in Section
4.1.1.1, enforcing its security policies according to configuration.

4.1.1.3 Assumptions on the environment

Hardware components are used by the separation kernel function as specified and
provide policy enforcement as specified.

4.1.2 Generic device abstraction component

A generic device abstraction component is a MILS component having the purpose of
abstracting the access mechanism of a special purpose hardware device to a defined
set of connected partitions. In the simplest realization, this component mediates
accesses from one partition to one hardware device only. The connected partition
uses as interface to the component a standardized interface. More difficult
realizations of this component allow connecting more than one partition to the
component. This form requires a software-based virtualization strategy of the
hardware component’s functionality, which is supposed to be shared and impossible
to be virtualized in hardware (e.g. by SR-IOV devices). In other words, all
functionality that is not virtualizable by hardware shall be virtualized by software to
provide the sharing functionality. As an example, communication based on an
ethernet protocol optimized for avionics reliability requirements, Avionics Full Duplex
Switched Ethernet (AFDX) requires sometimes to spread payload to multiple
partitions. This is a functionality usually not supported by common (self-virtualizing)
network hardware, since those devices can route data to one partition, only. Thus,
the multiplication and distribution of payload needs to be done in software.

4.1.2.1 Services

Functionally correct implementation of the abstraction mechanism to the hardware
devices.

Functionally correct implementation of the separation mechanism (resource
allocation policy and/or access control policy) if more than one device is using this
instance of the component.

4.1.2.2 Architecture

Other partitions interact with this component using the abstraction mechanism, it is
the service provided by the component. For example, you have the POSIX standard
interface (e.g. “read”, “write”) on the one the side and real hardware register
accesses on the other side. By this, the Generic Device Abstraction Component
abstracts the accesses. This component interacts with other component, i.e.
hardware devices via their interfaces.

4.1.2.3 Assumptions on the environment

A separation kernel is available. The hardware device’s interface to the component
managing and abstracting it is not accessed directly by another component.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 32 of 63

4.1.3 Console system component

Historically a console is a workstation at which a human operator can control a
computer and interact with one program in a text-oriented (line or page) or graphical
fashion. When interaction was simple and diagnostics means were primitive, a
program would issue messages to the console, and the operator would grab the
attention of the program from time to time. At the point in time the operator inputs
commands, the program will usually answer by resuming its flow of messages.
Progress in computing made it desirable to be able to address multiple programs at
once, giving rise to a separation of the concept of a message console and that of the
console or terminal used by an operator, and to the concept of multiplexing multiple
virtual consoles over one physical one (or even within multiple layers of virtual
consoles, in a tunnelling fashion).

The message console concept will be addressed by the audit system component
(see Section 4.1.6). Here we focus on the console as a channel for interaction
between an operator and programs. Note that on systems where users in the
computer sense are not tied to human beings, a console is often absent, or hidden
and used mainly for diagnostics and maintenance.

Therefore, a console system component connects applications to human interface
devices, and thus is an instance of the Generic Device Abstraction Component.

If a console presents one program at a time, or several programs that belong to one
security domain, then there will be no ambiguity for the human operator regarding the
security classification. It is up to the human operator to ensure that he is controlling
the right partition. If a console presents an operator with multiple security domains at
the same time, then there has to be a non-bypassable mechanism such that the
operator can always tell which domain he/she is interacting with.

It typically has one of the following forms:

- Physical, including specific displays, input devices [RD07, Del10]. In [Del12a],
in addition to a specific monitor and console, a USB interface is also
considered. Nordbotten and Gjertsen built a system where a console manager
and a display manager are each encapsulated into a partition [NG12].

- Virtual, providing one console channel to one program or to a group of
programs belonging to a single security domain, but running itself within some
form of transport that can multiplex multiple such virtual consoles. Such
transport can route to a local physical console or to something else, say, over
a network connection offering adequate security properties.

4.1.3.1 Services

Input, output (e.g. display) streams

Multiplexing of streams

A physical console, in addition to a display device and human-machine input devices,
can provide physical connection ports for external devices. Unlike external ports that
would be associated with the computer itself, these external ports are meant to be
associated with the current operator. HMI devices such as displays, controllers, audio

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 33 of 63

devices, usually are of this nature and are simply managed by making them available
to the program or programs of the current operator. If the console can be switched
between operators, then a policy must be devised for switching these devices as
well, or not.

Some devices can be connected to a console, that are themselves concerned with
multi-domain security. An example would be a mass-storage device through the file
system component. Policies that make sense include:

- Mapping the device to the computer rather than the console, e.g. in the case
of a mass-storage device, honouring file permissions and ownerships inside
the regular file system component.

- Mapping the entire block device to the programs of the current operator and
letting them access arbitrary locations in the device, which now cannot be
trusted by other programs.

4.1.3.2 Architecture

Data and control streams are separated [Del12a, p. 48], and passed from its clients
to hardware for input and output. If not all channels are dedicated, then resources are
scheduled for reuse (“multiplexing”). The architecture avoids information flow when a
resource is reallocated.

A console capable of serving multiple security domains at the same time can
disambiguate which one or ones are presented to the user by:

- Reserving a trusted portion of the display for telling what is displayed on the
rest of the display and allowing the selection thereof. This must be “always
invoked” in a very literal sense, meaning that a full-screen application cannot
be supported, or an auxiliary display must be added.

- Providing a “secure access key” that cannot be overridden by applications,
that lets the user invoke a trusted status/selection panel that is overlaid on
applications’ displays. One must be very careful that operators are trained to
ignore what they see if they are not positive that they invoked the trusted
status/selection panel, as a malicious application could impersonate that
panel, effectively realizing a Trojan horse, since applications have access to
the display area where the trusted panel is shown. This also requires a
guaranteed response time for showing the trusted status/selection panel after
pressing the secure access key, otherwise there would still be a temporary
opening for a Trojan horse.

4.1.3.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the console
component.

4.1.4 Network system component

A network system component is a MILS component having the tasks (1) of
abstracting the used network infrastructure and topology connecting the MILS system
with other platform-external systems and (2) of abstracting or hiding the physical
location of a partition’s communication partners. Usually the network system

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 34 of 63

component also (3) abstracts the access mechanism to the network device and, thus,
is a special purpose instantiation of the Generic Device Abstraction Component. Note
that a network system component can be very complex and may by implemented by
multiple partitions running encapsulated sub-functions for handling this complexity.
For example, partition A could contain TCP/IP stack A’, partition B could contain
TCP/IP stack B’ and partition C could make the decision to route packets either
through A or B.

For fulfilling task (1), the abstraction of the used network infrastructure and topology,
the component has to implement the used network infrastructure protocols. The
border between application-level protocols and infrastructure protocols is usually
fluent, depending on the required means of communication. However, as example
one could draw the border between layer 4 and layer 5 of the OSI model, i.e. that the
network system component implements the protocol stack up to UDP, TCP, … and
leaves the implementation of higher layers up to the connected partition. The network
system component is mentioned in [UV05], with e.g. implementing CORBA, DDS,
HTTP, SOAP. The task of the network system component on the ingress data traffic
is to analyse the routing information and to route the ingress data to the associated
connected partition correctly. This may or may not include reassembling of the data
stream, depending if the connected partitions require lower protocol stack levels for
their purposes or not. However, for full abstraction of the network infrastructure, the
network system component should reassemble the data stream and provide only the
application-level payload to the connected partitions. For the egress traffic, the
partition provides the application-level payload to the network system component,
which generates valid data network packets and transmits them to the correct
partition (if on the same platform) or transmits them via the network link.

Task (2), the abstraction of the communication partner’s physical location, is another
task performed by the network system component. From the application point of view
encapsulated in the boundaries of its partition, the application does not know whether
the communication partner is located on the same hardware platform or platform-
externally. The task of the network system component is to determine the location of
the communication partner and the correct routing of the data stream.

Task (3), the abstraction of the device interaction (i.e. the driver), applies only if the
MILS system is actually connected to a network. To this task also applies to virtualize
the network device to allow network sharing among the connected partitions.

By implementing all three tasks, the network component is required to ensure
separation of data stream, in particular if one instance of this component handles
data streams of different criticality (thus the component is MLS). Having such an MLS
implementation may also require considerations on load-balancing and Quality of
Service on the network link. For reducing complexity, the system designer should
consider to implement multiple instances of network system components handling
data of only one criticality (SLS components). However, this is only feasible if the
system possesses multiple network devices or the network device is capable to
support hardware virtualization technology.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 35 of 63

For ensuring separation, it is also conceivable to use other MILS components, such
as crypto components, which apply cryptographic methods to the data stream
beforehand sending it to the network component.

Similar proposals for a network protocol component occur as MILS network system
protection profile (MNSPP) [RD07, Del10, Del12a]. Other related work mentions a
Partitioning Communications System (PCS) [AFOB+12, Uch07] or MILS Message
Router (MMR) [AFOB+12, AFHOT06, ZSP+12]. The described functionality of those
components is similar to a subset of the network system component. However, it is
difficult to draw a clear line between the functionality of the PCS compared to the one
of the MMR. For avoiding complexity in terminology, we find it more intelligible to use
the network system component to consolidate and cover the functionality of the PCS
and the MMR.

4.1.4.1 Services

Functionally correct implementation of network infrastructure protocols.

Functionally correct implementation of the data routing to connected partitions
including its reassembling (if applicable) of ingress data traffic.

Functionally correct segmentation of egress data streams received by connected
partitions.

Functionally correct implementation of the device interaction and its abstraction.

4.1.4.2 Architecture

The network system component is a component interacting with other partitions using
it. If the MILS system possesses network devices, the network system component
interacts with a subset of the device’s interfaces.

4.1.4.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the network
protocol component.

4.1.5 File system component

A file system component is a MILS component and an instantiation of the Generic
Device Abstraction Component that implements file system services. It is described
in [RAV07]. The purpose of the File system component is the abstraction of the
access mechanism and the physical location of the block devices storing data
permanently. For decoupling the physical location of the storage, the component
could use the services of the Network component. To maintain the separation
properties, the component has to ensure separation in a physical or logical (or both)
way:

- Physical Separation: by storing data of different partitions on different physical
locations of the storage volume (i.e. using the hard disk partitions) or on
different storage volumes.

- Logical Separation: by applying cryptographic methods (e.g. provided by a
crypto component) or special storage patterns using the same storage

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 36 of 63

partition (e.g. gap storage with different offsets, special file system formats,
…).

4.1.5.1 Services

Functionally correct implementation of the applied separation mechanism to ensure
data separation of stored data.

Functionally correct implementation of the access mechanism to the device (i.e.
driver), if the storage device is located on the same hardware platform.

4.1.5.2 Architecture

The file system component is a component interacting with other partitions using it. If
the storage device is located remotely the file system component may interacts with
other components as well.

4.1.5.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the file
system component.

4.1.6 Audit system component

An audit system component is a MILS component that implements audit services that
can be used by other components [Del12b, p. 24].

4.1.6.1 Services

Functionally correct implementation of audit system.

4.1.6.2 Architecture

The file audit component is an optional component interacting with other partitions
using it. The benefit of audit can be (1) to document that an entity has received a
piece of information (non-repudiation) and (2) to monitor the MILS system, e.g. for
information flow policy violations by components, (3) get event notifications from
partitions to the audit system.

4.1.6.3 Assumptions on the environment

A separation kernel is available. The separation kernel does not bypass the audit
system component.

The separation kernel supports auditing [Del12b, p. 24].

A messaging system is available [Del12b, p. 24].

The compilation of memory structures is supported [Del12b, p. 24].

The audit system is able to retrieve information about the origin of the audit
information it is supposed to store.

4.1.7 Generic application component

4.1.7.1 Services

The generic application component implements any functional service required by an
application.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 37 of 63

4.1.7.2 Architecture

No statement can be made on the architecture of a generic application component.
The system integrator can choose to configure a generic application component so
that it is confined to a precise time-slot, limited memory and tightly controlled
communication, so that it is not needed to trust its developer of the application, even
if he is malicious. This kind of application is usually called “untrusted application”. In
other scenarios, it may be meaningful to give the application strong access to the
system, and even trust it do enforce a security policy for other applications, such as
an information flow policy, e.g. when the application acts as a downgrader. This
application is usually called “trusted application”. A trusted application can serve as
guard to any application, whereas an untrusted application only can serve as guard
to applications that are even less trusted.

4.1.7.3 Assumptions on the environment

The generic application component may assume the existence of other components,
e.g. network component, other generic device abstraction component.

4.2 Hardware components

4.2.1 Introduction

[SKPP] formulates hardware requirements for separation kernel in the non-standard
class “platform assurance” (APT). They are again discussed in [AFHOT06].
[AFOB+12] discuss the security needs of separation kernels with regards to existing
multicore architectures.

[Tri12] discusses in particular on the topic of hardware requirements for mixed-
criticality systems (safety and security) from the perspective of aviation computer
systems and formulates current research directions.

In general hardware requirements for MILS systems are dependent on the MILS
architecture itself and the external interfaces required by the system’s functionality. If
the MILS architecture relies on a separation kernel as fundamental component for
implementing the separation and information flow property of MILS, the basic
hardware requirements are defined by the separation kernel. In general separation
kernels rely on common hardware protection units as the Memory Management Unit
(MMU) and recently also Input/Output MMUs (IOMMUs). In addition, separation
kernels also use hardware timers.

Those units are essentially the only functionally indispensable hardware elements for
a separation kernel that are specified to be robust against attacks through illicit
information flows, i.e. internal partition interference or malicious flows by misusing
external interfaces (remote attacks). Any added hardware elements exist rather for
in-depth defence, for added safety against (random) hardware failures, or for
robustness against physical local attacks (mechanisms such as authenticated boot
and OS code, storage for secrets, etc.).

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 38 of 63

4.2.2 Processing units

Processing units, such as processor cores or special purpose co-processor, are
essential parts of MILS systems. Processing cores are responsible for processing the
software-based MILS components by using other system resources. By following the
control flow encoded in the software component’s programming code the cores are
able to achieve the intended component’s objectives, usually by interacting with other
hardware resources, such as memory or devices. Even if the major purpose of
processing units is their ability to execute the binary code, they also have
requirements with respect to spatial and temporal separation. In particular this
applies to the interaction with the memory hierarchy comprising of various cache-
levels and system’s memory. However, it also applies to the internal processing flow
of the processing cores, which have to ensure separation, too.

During partition runtime especially challenging are concurrent memory and device
accesses of novel multicore processing platforms, due to the measureable
interferences in access times depending on the amount of active cores [NP12].
During partition switch for the purpose of ensuring spatial and temporal isolation
software (usually the separation kernel) has to ensure the proper sanitization of the
(shared) resources used during processing the control flow. This includes the flush of
core-internal pipelines or caches to prevent cache attacks [YF13, SBY+13].

One important mechanism for ensuring spatial and time separation is the provision of
different execution modes for commands processed by the processing units. For
example changing critical configuration of other hardware component, like MMUs
settings, needs to be restricted in a way that only privileged software, e.g. the SK can
execute the commands for modifying those settings.

4.2.3 Memory Management Units (MMUs)

MMUs translate virtual addresses used by the processors into physical addresses
required for interacting with the resource memory. In general this component can
also be used for protecting certain memory area from processor accesses, it thus
enforces an access control policy. Dependent on the architecture of the MMU and its
way to maintain the translation tables, the MMU can be configured in a static or
dynamic way:

- Static means that all partition applications have static entries in the MMU’s
translation table construct, which do not change during system runtime. If
identical virtual addresses are used multiple times in various partitions, the
hardware has to provide a runtime mechanism for indicating which partition is
currently active and indicating the correct MMU translation entries (e.g.
runtime identifier or reconfiguration of pointers to the translation tables). Such
a static MMU configuration also implies a static spatial separation of the
memory without dynamic (re)allocation of memory regions for partitions.

- Dynamic means that the separation kernel has to reconfigure the translation
tables during partition switch. This approach does not require the previously
mentioned hardware platform identifiers but might require additional
processing cycles during partition switch.
Dynamic MMU configuration also allows realizing dynamic (re)allocation of

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 39 of 63

memory during application runtime. However, the necessary increased trust in
the reallocation mechanism is essential for assuring the security properties of
the separation kernel (e.g. zeroing memory after memory release).
Additionally, dynamic MMU configuration can be useful for implementing
performant inter partition communication, since the ownership of
communication pages can be shared or transferred between partitions for
purpose of avoiding the overhead of data copying.

Note that some available separation kernels use a combination of both mechanisms,
e.g. for realizing a static spatial separation of the memory but also allowing shared
pages for fast inter partition communication.

A security vulnerability of current MMUs is their level of trust put into the reliable
operation of its configuring software, e.g. the separation kernel. More specifically this
means that the separation kernel is able to interact with memory pages actually
belonging to partitions “privately”, without being visible to the SK. [JH11] discusses
this issue and provides hardware improvements for future MMUs. For example,
[JH11] propose that a VM can mark its page as private (in hardware) after allocation
from a hypervisor (analogous to a separation kernel in our context). Having the
private bit set this page can only be accesses by the VM and the hypervisor only can
sanitize it as soon as the VM allows it. Encoding new features into MMU hardware, of
course again raises the problem of ensuring that the hardware realization of this
approach is correct.

4.2.4 Input/Output Memory Management Units (IOMMUs)

An IOMMU provides transparent, isolated access to virtual instances of I/O devices to
one or more partitions [KS08]. These virtual device instances can be used just like a
physical instance of the same I/O device by these partitions. Other partitions have no
access to these virtual devices, nor can the virtual devices access memory spaces of
partitions other than the ones they have been assigned to.

If the system’s functionality demands to use external DMA-capable devices,
hardware components as IOMMUs are helpful to protect the system memory from
invalid DMA triggered by the device and thus, to achieve spatial separation. The task
of IOMMUs is similar to the one of MMUs. However, there are two differences to
MMUs:

1. MMUs are placed between the processor and the system memory. The
location of IOMMUs is between devices and the system memory.

2. The intention to apply MMUs into hardware was to increase the performance
for address translations between virtual and physical addresses. Later on, its
use for memory protection has been introduced. The motivation of using
IOMMUs is the other way around. Primary IOMMUs have been deployed for
memory protection reasons but can also be used for address translation.
However, using the address translation mechanism smartly can open the
opportunity of sharing hardware devices usually not intended to be shared,
e.g. by reconfiguration of the address tables on partition switch. Thus, an
IOMMU can provide transparent, isolated access to virtual instances of I/O
devices to one or more partitions [KS08]. Nevertheless, this approach is only

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 40 of 63

possible for stateless devices with immediate and short processing which only
perform DMA on behalf of cores, e.g. external FPU or vector processing
engines.

IOMMUs are getting required in a system in which DMA-capable devices shall be
directly assigned to an untrusted partition, i.e. an untrusted driver shall be allowed to
interact without additional software-based checks of the separation kernel (e.g. for
performance reasons).

Since in such a design the untrusted driver can access the entire memory abusing
the directly assigned device by triggering DMA to addresses outside of its allowed
memory resources, the hardware requires a component to restrict those accesses.
This is the task of the IOMMU.

For proper hardware architectures with IOMMUs it is necessary that the IOMMU
identifiers used for device’s identification are provided in a secure way. In particular
[SLN+10], [SV10], [WR11] and [MIM+13] discuss attacks using DMA and harming
IOMMU-based hardware designs. One class of those attacks abuses Message
Signalled Interrupts (MSIs) to trigger interrupts which do not belong to the device.
These attacks are possible since former IOMMUs only mediated transfers based on
(1) the accessing device, (2) the involved addresses and (3) the operational code for
the transaction but ignoring the data content of the transaction. For example, Intel
counteracts the class of attacks by a technology called “Interrupt Remapping”, which
validates also the interrupt vectors (messages) of the MSI [Int11]. Another class of
attacks uses a vulnerability of PCI to PCIe bridges, where the identifier is added by
the bridge but not by the devices connected to the bus “behind” the bridge. More
generic views on this issue introduce discussion on suitable device interconnect
topologies. The interconnect topology should provide the separation kernel
possibilities to uniquely identify the physical hardware interface (e.g. card slot) the
device is connected to. In general a bus strategy achieves this requirement worse
than a star topology.

In addition IOMMUs usually do not apply countermeasures against devices
performing timing attacks, like exhausting bandwidth, interrupt bombing or
uninterruptible long bus transactions (a timing attack on latency that can alter real-
time properties without needing to saturate the bus). Some timing attacks again
various in their utilization on the used interconnect topology.

4.2.5 I/O sharing

A special case of directly assigned device interfaces is the approach of using self-
virtualizing devices. With this technology it is possible to securely share a device
without requiring trusted software components for runtime device interactions
(runtime driver). For example it may also allow transferring parts of the functionality of
the network component into the hardware. Using this technology the hardware device
provides a physical interface for configuration purposes and a various number of
virtual interfaces appearing as runtime interface to the partitions that shall interact
with the device instance. A special standard called Single Root I/O (SR-IOV) [SRIOV]
extends the PCI Express (PCIe) standard and defines the hardware interface for
PCIe devices. To restrict DMA of virtual functions to the assigned partitions only, an

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 41 of 63

IOMMU is essential. Further investigation on platform requirements using PCIe
SRIOV is provided in [MIM+13].

Work on performance comparison of software-based and hardware-based I/O
sharing approaches are provided by [YYW08] and [WR08]. Both publications
conclude that hardware-based sharing using IOMMUs and direct mapping almost
performs with native performance. However, [WR08] additionally investigates on the
provided granularity of memory protection (inter- and intra-guest) of software-based
approaches compared to different strategies for reconfiguring the IOMMU on partition
switch. The final statement of this work is that software-based pre-validation of DMA
descriptors performs better than some approaches (not direct map!) for hardware-
based late validation of DMA transfers. Also software-based sharing strategies
enable enhanced intra-partition memory protection with respect to the granularity.
However, the downside of software-based approaches is their inability to protect
against device misbehaviours and the required assurance property of the software
components.

4.2.6 Timers

Separation kernels are in charge to provide separation properties in time and space
for a MILS system. Regarding time separation (e.g. real-time scheduling of
applications) the kernel requires a reliable signal defining the unit “time” for the
system. For this purpose hardware normally provides a periodic and stable
transducer in combination with a counter counting the generated signals. Knowing
the frequency of the transducer allows defining the resolution and thus the smallest
possible unit of time in the system. Both the transducer and the counter together
build the basics for implementing timers. Separation kernels use timers in one of two
fashions:

 Inflexible periodic timers that give rise to a so-called «tick» timer in the kernel,
periodically fired irrespective of whether there is activity to be carried out or
not. A number of OSes have this design because they are backwards
compatible with the Intel 8253 Programmable Interval Timer (PIT) that was the
only timer chip found in the original IBM PC (discounting the alarm function of
the MC146818 RTC chip that does not have a high repeat rate), even though
modern PC-compatible hardware has better timers.

 more flexible arbitrarily programmable timers that give rise to a «tickless»
kernel that wakes up only when necessary. Intel/Microsoft High-Precision
Event Timers (HPET, [Int04]), formerly known as Multimedia Timers because
they originated from the need for high-resolution arbitrary timers for sound
generation in desktop PCs, provide this capability with a free-running counter
and comparators although a subtlety of this hardware implementation for some
software designs is that a timer must be armed in the future only, e.g. it will not
trigger if armed too late just based on the fact that the comparison is “now
true”. Alternative designs typical of microcontrollers involve downcounters with
a feature for auto-reloading the timer with the next deadline that was provided
by the software ahead of time. This trivially eliminates jitter, whereas
downcounters without auto-reload have to be compensated in software by
accounting for the time lost between the previous deadline and the time when

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 42 of 63

the software actually loads the next deadline from some interrupt handler, and
while it is easy to compensate for absolute drift, jitter or a small lateness can
never be completely eliminated on processors where writing fully time-
deterministic code is impractical.

One timer is usually sufficient. Having several timers available may yield simpler or
faster software, although an implementation can be fairly simple with just one
hardware timer if that timer has just the right flexibility.

4.2.7 Chain of trust

A last important fact necessary to mention in this chapter is the topic of trusted
initialization of the different layers in a MILS system. Usually these different layers
are initialized in a well-defined sequence, e.g. first general boot code, followed by the
layer providing the separation property, followed by other layers providing system-
specific security functions and applications. To ensure that the entire sequence is not
compromised a root of trust is needed at the beginning of the sequence. Usually a
special hardware component storing a secret key and a hard coded boot code
provides this feature. Thus, also hardware components implementing the root of trust
can be necessary [Fre10]. Regarding trust in the software involved in the boot
sequence, there have been 2 schools of thought:

- All software from the reset vector (possibly with the assistance of firmware in an
internal ROM) is trusted and therefore hardware-assisted mechanisms are
provided to verify initial trust, and then it is up to this trusted software to preserve
the chain of trust to the next trusted software until usual hardware protection
mechanisms (user/supervisor mode and memory protection) are used to allow
controlled execution of untrusted code. This is the pattern used by the IBM/Sony
Cell BE™ [Shi06], Freescale’s Secure Boot [Fre11a] and Trust Architecture
[Fre11b] and, to our knowledge, ARM’s TrustZone® [ARM13].

- Boot software is not trusted, but hardware mechanisms exist in order to re-
establish a trusted context later on, or let trusted software establish that initial
software was not altered nor bypassed and therefore could only have taken
known action. This is the pattern used by the Trusted Computing Group™’s
Trusted Platform Module [TCG11].

4.3 System configuration of components

The configuration of a MILS system comprises the configuration of the separation
kernel, and the configuration of other components, such as the configuration of
applications, and the configuration of hardware.

4.3.1 Configuration of the separation kernel: configuration space

We have defined the separation kernel to be the main policy-enforcing element of a
MILS system, using hardware mechanisms provided by the hardware in the MILS
core. Thus, its configuration options to a large extent need to reflect the configuration
of a MILS system. In Section 3.2.13 of this document, a separation kernel has
already been characterized as enforcing the resource allocation, access control and

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 43 of 63

information flow policies. Thus, the configuration of a separation kernel equals the
configuration of these policies.

The above definition is fairly abstract. Giving an exhaustive, yet product-independent
list of configuration parameters is non-trivial, and perhaps not even desirable: If we
start with SKPP, despite the string “configuration” occurs at least 510 times in SKPP,
SKPP does not give a comprehensive list of configuration data at one place. For
example, SKPP mentions system memory and processing time per partition [SKPP,
p. 78] and then information flow policy configuration data, audit configuration data,
clock settings, and self-test period as other examples [SKPP, p. 175]. Taking into
account that an operating system used for IMA (recall Section 2.1) can be provided
by a separation kernel (“a separation kernel is similar to the "partitioning kernels"
used in integrated modular avionics (IMA), but is more aggressively minimized”)
[BDR+08, p. 9], possibly a better, more concrete, yet still product-independent
example can be found in [ARINC-653]. For an IMA operating system, [ARINC-653, p.
22] specifies that, (1) for each partition, its memory requirements, its scheduling
parameters (period, duration), identity of messages to be sent/received by the
partition are configured by a configuration table, (2) globally, that a configuration
table of inter-partition communication objects is kept and a fault handling is
configured.

4.3.2 Configuration of other components: configuration space

However, note that the separation kernel configuration only addresses part of the
overall MILS system configuration. For example [AFOB+12, p. 181] emphasizes that,
in addition to the configuration layer at the separation kernel level, the configuration
of a MILS system is also strongly determined by the configuration of its hardware. For
example, the configuration of a MILS system includes which PCI slot to use for which
PCI card, the memory mapping of hardware and so on.

4.3.3 Configuration management

Configuration management: The need of configuration management for secure
systems is addressed by the [CC12] in general and, more particular, for IMA systems
in [DO-297, Rom08]. It is emphasized that to reproduce the configuration of a system
using a separation kernel, the configuration of each level must be stored, including
hardware and configuration data of applications running in partitions managed by the
separation kernel. [SKPP, p. 17, 27] defines (1) the generation of an abstract
configuration vector by a configuration tool, (2) its transformation to machine-
readable configuration data on a boot medium by a load function, and (3) its usage
by a boot function during operation. Also, [ARINC-653, p. 22] stipulates that
configuration tables of an IMA operating system must be built separate from the
operating system and they are not directly accessed by applications; an
implementation detail that of course is only binding for a separation kernel if it is to be
used for an IMA system. However, except for that mention of separate build of
configuration tables that is not a requirement in [SKPP], detailed configuration
workflow guidance for an entire MILS system is out of scope and rather scarce in this
IMA [ARINC-653] application software standard interface description.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 44 of 63

Reconfiguration: Reconfiguration of a system is making some change(s) to the
configuration of that system; we call that a configuration change.

A configuration change modifies the system configuration data. For example, in the
separation kernel the Information Flow Policy could be modified. When a
configuration change occurs by going the system offline and reboot, the change is
called a static configuration change. When the change occurs on-line without reboot
during an execution, then the configuration change is dynamic [SKPP, p. 16, p.40;
NLI, Section 5.2]. If configuration change capability is not built-in into a separation
kernel, it can be implemented by the component of the MILS platform, for example
select or upload another image of the separation kernel into the MILS platform or a
partition component that specializes in doing this. Another example would be the
dynamic configuration of virtualization hardware, which e.g. could be done from
within a partition. In this case, you have already configured the virtual interfaces for
the partition in the separation kernel, and then you connect the virtual device
hardware to them.

4.3.4 System update

Related to topic of configuration management is the treatment of system updates of
the MILS components. A common automotive use case for reconfiguration is a
software update of possibly every software component in the system. The security
policy for system updates typically specifies that system updates cannot be done by
the internet but only locally via the on-board bus.

However, many automotive manufacturers (OEMs) tend to require software updates
‘over the air’ and request for improved methods to guarantee (1) fail safety
(robustness in case of failures during the update procedure), (2) integrity (updating
sources other than originated by the OEM must be rejected) and (3) security (the
software update mechanism must be resistant against attacks). Since access control
policies themselves may be subject of software updates, hence modification, special
care must be taken to self-protection.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 45 of 63

Chapter 5 Conclusion

5.1 Overview of component policies and reuse

An overview of policies enforced and usage of services by other components is given
in .

In , for “provides” or “used-by” relations, an “M” means “provision/use is mandatory”,
an “O” means “provision/use is optional”. In the case of “M” for “component X used by
component Y” component X is meant only as mandatory for component Y, if the
MILS system has component Y at all (this also may not be that case). As it is always
an implementation option, for brevity, we do not consider self-use or self-invocation in
this table. A component is a guard if it enforces some resource allocation policy,
access control policy and/or information flow policy in the sense (2a) or (2b) of
Section 3.2.7.

C
o
m

p
o

n
e
n

t
p

ro
v
id

e
s

re
s
o

u
rc

e
 a

llo
c
a

ti
o
n

 p
o

lic
y

C
o
m

p
o

n
e
n

t
p

ro
v
id

e
s
 a

c
c
e

s
s

c
o

n
tr

o
l
p
o

lic
y

C
o
m

p
o

n
e
n

t
p

ro
v
id

e
s

in
fo

rm
a

ti
o

n
 f
lo

w
 p

o
lic

y

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y

s
e

p
a

ra
ti
o

n
 k

e
rn

e
l

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y

c
o

n
s
o

le
 c

o
m

p
o
n

e
n
t

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y

n
e

tw
o

rk
 s

y
s
te

m
 c

o
m

p
o
n

e
n

t

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y
 f
ile

s
y
s
te

m
 c

o
m

p
o
n

e
n
t

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y
 a

u
d

it

s
y
s
te

m
 c

o
m

p
o
n

e
n
t

C
o
m

p
o

n
e
n

t
is

 a
 g

u
a

rd

Software components

Separation
kernel

M M M M M M M M

Console
system
component

 M O O M

Generic
device
abstraction
component

O O O O O O O O O

Network
system
component

M M O O O O O M

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 46 of 63

C
o
m

p
o

n
e
n

t
p

ro
v
id

e
s

re
s
o

u
rc

e
 a

llo
c
a

ti
o
n

 p
o

lic
y

C
o
m

p
o

n
e
n

t
p

ro
v
id

e
s
 a

c
c
e

s
s

c
o

n
tr

o
l
p
o

lic
y

C
o
m

p
o

n
e
n

t
p

ro
v
id

e
s

in
fo

rm
a

ti
o

n
 f
lo

w
 p

o
lic

y

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y

s
e

p
a

ra
ti
o

n
 k

e
rn

e
l

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y

c
o

n
s
o

le
 c

o
m

p
o
n

e
n
t

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y

n
e

tw
o

rk
 s

y
s
te

m
 c

o
m

p
o
n

e
n

t

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y
 f
ile

s
y
s
te

m
 c

o
m

p
o
n

e
n
t

C
o
m

p
o

n
e
n

t
is

 u
s
e

d
 b

y
 a

u
d

it

s
y
s
te

m
 c

o
m

p
o
n

e
n
t

C
o
m

p
o

n
e
n

t
is

 a
 g

u
a

rd

File
system
component

 M O O O O M

Audit
system
component

 M O O O M

Application
(trusted)

O O O O

Application
(untrusted)

O[1] O[1] O[1]

Hardware components

Processor M M M M M M M

MMU M M M/O[2] M

IOMMU M M[3] M[3] M[3] M[3] M[3] M

I/O sharing M O O[4] M

Timer M

Chain of
trust

 [5] O M

Remarks:

[1] A trusted application can serve as guard to any application, whereas an untrusted application only can serve as guard to
applications that are even less trusted.

[2] MMUs may be needed for network components depending on hardware, e.g. on PowerPC network devices are memory-
mapped. Also on Intel, the entire PCI express is memory mapped.

[3] If and only if DMA is used.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 47 of 63

[4] E.g. a physical harddisk that is accessed by the file system component.

[5] As a chain of trust denies access if a signature is not provided properly, it can be seen either as access control policy or as
integrity policy.

Table 4: Policies enforced and usage by other components

We observe that access control policy is provided by almost any component, a
resource allocation policy or information flow policy is more rarely encountered. A
timer and a chain of trust do not implement their own access control/resource
allocation/information flow policies, but can be used by the separation kernel to
support resource allocation and integrity requirements.

5.2 Secure design principles

In Table 5 we compare our MILS experience with the Saltzer and Schroeder Design
Principles [SS75] previously introduced in Section 2.4. It can be seen that many
principles carry over to MILS systems. Those principles that are not fully carried over
are those which clash with the stringent performance and real-time requirements of
MILS systems.

Design Principle (as in
[SS75])

Explanation (as
summarized by [Bis00])

Implementation in MILS

Economy of Mechanism The protection mechanism
should have a simple and
small design.

Some MILS components,
such as the separation
kernel, are small.

Fail-safe Defaults The protection mechanism
should deny access by
default, and grant access
only when explicit
permission exists.

The default policy in a
MILS system is: no
information flow and no
resource sharing unless
specified.

Complete Mediation The protection mechanism
should check every
access to every object.

This is implemented by a
small reference monitor,
the separation kernel.

Open Design The protection mechanism
should not depend on
attackers being ignorant of
its design to succeed. It
may however be based on
the attacker’s ignorance of
specific information such
as passwords or cipher
keys.

MILS design is
comparatively well
understood and open.

Separation of Privilege The protection mechanism
should grant access
based on more than one

For performance reasons,
and because this kind of
policy is not so common in

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 48 of 63

Design Principle (as in
[SS75])

Explanation (as
summarized by [Bis00])

Implementation in MILS

piece of information. (e.g.,
two commanders need to
agree to launch a
weapon).

embedded systems, this is
usually not implemented in
MILS systems.

Least Privilege The protection mechanism
should force every
process to operate with
the minimum privileges
needed to perform its task.

This is usually only
implemented at a partition
granularity level in MILS
systems (the calculation of
the “minimum privileges”
can be non-trivial).

Least Common
Mechanism

The protection mechanism
should be shared as little
as possible among users.
(e.g. shared variables
shall be avoided)

An example
implementation of this
principle is that
middleware (user space
libraries) is usually put into
partitions of a separation
kernel.

Psychological
Acceptability

The protection mechanism
should be easy to use (at
least as easy as not using
it).

Use of the protection
mechanism is
implemented by fail-safe
defaults. The
decomposition of a system
into partitions requires
some initial effort, but in
the long run makes it
easier to understand and
maintain its functionality.

Table 5: Secure design principles and their implementation in MILS

5.3 Results

We have identified and described the origins where MILS comes from (Chapter 2)
and established a foundation we can use for the description of the architecture of
MILS systems. For example, we have obtained a common “picture” of a MILS system
(Section 3.1). We have also created working definitions for fundamental MILS terms
in a bottom-up way, including definitions of closely related security policies such as
access control policy, resource allocation policy or information flow policy (Section
3.2). Several iterations were needed to obtain this in a clean, yet understandable
way, which may explain why we have not seen this bottom-up approach done
elsewhere.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 49 of 63

We have also identified some widely used terms we chose to avoid, such as “PCS” or
“middleware”, because we consider them of little help and even misleading. We were
able to apply the terminology to previous work on security gateway (Section 3.3).

We have reached consensus to present hardware and software components as
equal citizens and compiled a catalogue of MILS hardware and software
components, including a security-centric description (Chapter 4). In particular, we
have identified a generic device abstraction component. We have identified several
instances where separation kernel policy enforcement depends on guarantees by
hardware components. In Section 5.1, we have summarized security policies
provided by components, mutual interdependencies of components and classified
components as “guards”. This could serve as a basis for a more detailed analysis of
information flows and their guards of concrete components as proposed in
[AFOB+12, Chapter 4]. Section 5.2 establishes that MILS largely follows well-
established principles of secure system design. Our document appears to be a
reasonable basis for further description of individual components within the EURO-
MILS project.

5.4 Acknowledgment

The research leading to these results has received funding from the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 318353. We thank Rance DeLong (Open Group) for commenting on some
parts of an earlier version of the text.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 50 of 63

Chapter 6 Glossary

Access control policy: A component’s access control policy acts on the
component’s interface used to manage exported resources. In this respect it is
identical to the aforementioned resource allocation policy (Section 3.2.5). However,
the interface is characterized by that a request to the resource includes an explicit
reference to the resource (e.g. the resource’s name or a numerical identifier).
Identically to the aforementioned resource allocation policy (Section 3.2.5), the
access control policy defines which of the component’s resources are kept internal to
the component and which are exported to which other components. When a resource
is exported to more than one other component, the resource is shared. The access
control policy is in the “space” domain.

Application: An application is one or more executable(s).

Audit System Component: An audit system component is a MILS component that
implements audit services that can be used by other components

Communication object: A communication object is an exported resource provided
by a component. It can be shared between components. Communication objects are
used by components to communicate between them.

Component: A component is a term to describe the decomposition of a (in general,
any) system into meaningful self-contained parts. For example, a (yet to be defined)
MILS system consists of components. In general, components may be implemented
by (1) hardware, (2) software, or (3) a combination of hardware and software
[CBB+03, DO-297].

Configuration: The configuration of a component contains the component’s identity,
and it defines any security policy (access control policy, resource allocation policy,
information flow policy) enforced by the component. An information flow policy
configuration also may be implicitly configured by resource allocation policy
configuration and access control policy configuration.

Console system component: A console system component connects applications
to human interface devices, and thus is an instance of the Generic Device
Abstraction Component.

Domain: A domain (or “security domain”) is a unit of separation created and
maintained by any MILS component, for example by an application (Section 3.2.9), a
function (Section 3.2.12), or the MILS core (Section 3.2.14), which is enforcing a
security policy on exported resources.

File system component: A file system component is a MILS component and an
instantiation of the Generic Device Abstraction Component that implements file
system services.

Function: A function is a logical group of partitions for achieving common objectives.
The implied partitions may be connected using information flows.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 51 of 63

Generic device abstraction component: A generic device abstraction component
is a MILS component having the purpose of abstracting the access mechanism of a
special purpose hardware device to a defined set of connected partitions.

Information flow policy: The term information flow policy has more than one usage,

(1) the most simple one is to use it as an umbrella term for “access control
policy” and “resource allocation policy” combined or

(2) to express policies where pieces of information (messages) are written to
one or several communication objects(s) by a sender and subsequently these
messages are read from the communication object(s) by a receiver. Such
policies may include rules based

(2a) on the sender/receiver of the messages and/or

(2b) on the content of these messages.

Note: for most components, interpretation (1) is used. (2a) will be used in the context
of a separation kernel (Section 3.2.13). The enforcement of (2b) is a typical task of
security gateway (discussed as an example in Section 3.3). An information flow
policy in the sense of (2a) is either explicit, based on identities of components
between which information flow is allowed, or implicit, as unambiguously defined by
the resource allocation policy and access control policy.

MILS architecture: “MILS architecture” refers to the architecture of the
implementation of a concrete MILS system.

MILS architecture template: “MILS architecture template” refers to a template
encompassing many possible MILS systems.

MILS platform: A MILS platform consists of the MILS core and optional software
and/or hardware components that provide secondary security functionalities and do
not contribute to the enforcing of separation.

MILS system: A MILS system is a concrete deployment of a MILS platform with a
defined set of partitions.

MLS system: An MLS system is a system with different security requirements for
different components. It can be implemented by a MILS system.

Multi-level Secure (MLS) component: A Multi-Level Secure Component is a
component that handles information of with different security levels concurrently
during one runtime instance.

Multiple Single-Level Secure (MSLS) component: A Multiple Single-Level Secure
Component is a special kind of SLS component that processes data of multiple
security levels, but always maintains separations between classes of data by
exclusively processing only one security level during its runtime instance. For
example this separation can be implemented by allowing access to a different
security level only when the component has rebooted with different parameters. Also
deploying multiple instances of one SLS component processing different single
security levels turn this SLS component into an MSLS component.

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 52 of 63

Note: in [Alv98] this was restricted to temporal separation, “at a single time-point, only
handles information from one component”. If such a single-level process is to be
implemented as untrusted process [Alv98], it can be supplemented by an appropriate
labelling and filtering of messages.

Network system component: A network system component is a MILS component
having the tasks (1) of abstracting the used network infrastructure and topology
connecting the MILS system with other platform-external systems and (2) of
abstracting or hiding the physical location of a partition’s communication partners.
Usually the network system component also (3) abstracts the access mechanism to
the network device and, thus, is a special purpose instantiation of the Generic Device
Abstraction Component.

Partition: A partition is a component that serves to encapsulate application(s) and/or
data. Thus, the content of a partition is application(s) and possibly other data. A
partition is a unit of separation with respect to

 resource allocation in the space and time domains,

an access control policy and an information flow policy in the space domain.

Resource: A resource is anything (processor such as a CPU or a processing core,
memory, software, data, network, etc.) internally used or exported by a component. A
resource may be physical (a hardware device) or logical (a piece of information). A
resource may be shared by multiple components or be dedicated to a specific
component.

Exported resources are those resources to which an explicit reference is possible via
a component interface, e.g., the programming or configuration interface. Internal
resources are those resources used exclusively by the component, and which have
no explicit reference via a component interface.

Resource allocation policy: A component’s resource allocation policy acts on the
component’s interface used to manage exported resources. This interface is
characterized by that a request for a resource is made without knowing in advance
how the resource is “named” or “addressed”. The request is made for a quantity of
the resource, and then the component decides whether to grant or deny the request
to export that resource in the desired quantity. The resource allocation policy defines
which of the component’s resources are kept internal to the component and which
are exported to which other components. When a resource is exported to more than
one other component, the resource is shared. A resource allocation policy can be in
the “space” domain, when resources can be used simultaneously but are kept in
different spatial (e.g. memory) locations or in the “time” domain, where resources are
used sequentially, but kept in different time slices. An example for resource allocation
in the “time” domain is the allocation of a CPU to a component for a limited period of
time.

Separation kernel: A separation kernel A separation kernel is a component that
enforces a resource allocation policy and an access control policy on its exported
resources (partition, resources allocated to a partition, communication objects).
Communication objects allow for controlled information flow between partitions. A

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 53 of 63

separation kernel may have an explicit or an implicit information flow policy on its
partitions (see definition of information flow policy for details).

The separation kernel uses separation-supporting hardware to provide the separation
between partitions in a MILS core.

Shared resource: When a resource is exported to more than one other component,
the resource is shared.

Single-Level Secure (SLS) component: A Single Level Secure Component is a
component that every time processes data of one security level.

System integrator: The person composing the MILS system from its components.

Virtual machine: A virtual machine (VM) consists of software that imitates a physical
hardware machine. The virtual machine will for example give the illusion of a physical
CPU and physical memory to an operating system that is running in it

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 54 of 63

Chapter 7 List of Abbreviations

AFDX Avionics Full Duplex Switched Ethernet

AMD Advanced Micro Devices

CBEA Cell Broadband Engine Architecture

CC Common Criteria for Information
Technology Security [CC12]

CDS Cross-Domain Solution

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

DMA Direct Memory Access

EAL Evaluation Assurance Level

HW hardware

IMA Integrated Modular Avionics

I/O Input/Output

IO/MMU I/O Memory Management Unit

IPC Inter-Process Communication

LRU Line Replacement Unit

MILS Multiple Independent Levels of Security

MIPP MILS Integration Protection Profile

MLS Multi-Level Secure

MMU Memory Management Unit

MSI Message Signalled Interrupt

MSLS Multiple Single-Level Secure

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 55 of 63

NEAT Non-Bypassable, Evaluatable, Always
Invoked, Tamperproof

NSA National Security Agency

OEM Original Equipment Manufacturer

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect
Express

PCS Partitioning Communications System

SK Separation Kernel

SKPP Separation Kernel Protection Profile

SLS Single-Level Secure

SW software

VM virtual machine

VMM Virtual Machine Monitor

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 56 of 63

Chapter 8 Bibliography

[AA06] Keith Adams, Ole Agesen, A Comparison of Software and Hardware
Techniques for x86 Virtualization, ASPLOS'06, p. 2-13, 2006, ACM, New York, NY,
USA, http://www.ittc.ku.edu/~niehaus/classes/750-
s09/documents/asplos235_adams-2006.pdf.

[AFHOT06] Jim Alves-Foss, Scott Harrison, Paul W. Oman, Carol Taylor, The MILS
Architecture for high-assurance embedded systems, International Journal of
Embedded Systems, vol. 2, no. 3--4, p. 239-247, 2006,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6810.

[AFOB+12] Jim Alves-Foss, Paul Oman, Ryan Bradetich, Xiaohui He, Jia Song,
Implications of Multi-Core Architectures on the Development of Multiple Independent
Levels of Security (MILS) Compliant Systems, no. 0704-018, 2012, University of
Idaho, Center for Secure and Dependable Systems, Moscow, Idaho,
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA568860.

[Air97] Airlines Electronic Engineering Committee, Avionics application software
standard interface: ARINC specification 653, January, 1997, Aeronautical Radio, Inc.,
2551 Riva Road, Annapolis, MD 21401, http://www.arinc.com/.

[Alv98] Jim Alves-Foss, The Architecture of Secure Systems, Hawaii Interational
Conference on System Sciences, p. 307-316, January, 1998,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=p
df.

[And72] James P. Anderson, Computer Security Technology Planning Study, no.
ESD-TR-73-51, Oct., 1972, Deputy for Command and Management Systems HQ
Electronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, MA,
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf.

[And08] Ross Anderson, Security engineering, 2008, J Wiley & Sons,
http://www.cl.cam.ac.uk/~rja14/book.html.

[ANS01] American National Standards Institute, ANSI X3.172-1996 American
National Standard Dictionary of Information Technology (ANSDIT), Release 16,
2001, http://www.incits.org/ANSDIT/Ansdit.htm.

[ARINC653] Airlines Electronic Engineering Committee, Avionics application software
standard interface: ARINC specification 653, January, 1997, Aeronautical Radio, Inc.,
2551 Riva Road, Annapolis, MD 21401, http://www.arinc.com/.

[ARINC811] Airlines Electronic Engineering Committee (ARINC), Commercial Aircraft
Information Security Concepts of Operation and Process Framework, no. ARINC
specification 811, January, 2005, Aeronautical Radio, Inc., 2551 Riva Road,
Annapolis, MD 21401, http://www.arinc.com/.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.6810
http://www.arinc.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.6431&rep=rep1&type=pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf
http://www.incits.org/ANSDIT/Ansdit.htm
http://www.arinc.com/

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 57 of 63

[ARM13] ARM Ltd.,
http://www.arm.com/products/processors/technologies/trustzone.php.

[ARP4754] Society of Automotive Engineers, Safety Assessment for Airborne
Systems, Equipment Committee, ARP4754: Certification Considerations for Highly-
Integrated Or Complex Aircraft Systems, 1996, Society of Automotive Engineers,
SAE World Headquarters, 400 Commonwealth Drive, Warrendale, PA 15096-0001
USA, http://www.sae.org.

[Avi08] Avionics designers choose SYSGO real-time embedded software for A400M
cargo system, Avionics Intelligence, 10 Dec 2008, http://www.avionics-
intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-
embedded-software-for-a400m-cargo-system.html.

[BBH+05]. William Beckwith, Carolyn Boettcher, Mark Hama, Jahn Luke, Tod
Reinhart, High Assurance Safe and Secure Distributed Systems and Information
Sharing, Infotech@Aerospace Conferences, 2005, American Institute of Aeronautics
and Astronautics.

[BCK03] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice,
2nd ed, Addison-Wesley 2003.

[BDR+08] Carolyn Boettcher, Rance DeLong, John Rushby, Wilmar Sifre, The MILS
Component Integration Approach to Secure Information Sharing, Digital Avioncis
Systems Conference (DASC), 2008, http://www.csl.sri.com/~rushby/abstracts/dasc08

[Bis00] Matt Bishop, Saltzer's and Schroeder's Design Principles, 2000,
http://nob.cs.ucdavis.edu/classes/ecs153-2000-04/design.html.

[CBB+03] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Robert Nord, Judith Stafford, Documenting Software Architectures: Views
and Beyond, Addison-Wesley 2003.

[CC12] Common Criteria Sponsoring Organizations, Common Criteria for Information
Technology Security Evaluation. Version 3.1, revision 4, vol. 1--3, September, 2012,
http://www.commoncriteriaportal.org/cc/.

[Cordis12] CORDIS document server
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197
414

[Cof12] Darren Cofer, Complexity-reducing design patterns for cyber-physical
systems, 2011, Rockwell Collins,
http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/Rockwell
%20Collins%20META%20Final%20Report.pdf.

[CVdM09] Stephen Chong, Ron van der Meyden, Using architecture to reason about
information security, 2009, http://www.cse.unsw.edu.au/~meyden/research/arch-
filter.pdf.

[DCS+04] John Detombe, Darin Cowan, Mike Smith, John O'Brien, Survey of Multi-
Level Security (MLS) Products, no. CR 2004-268, 2004, Defence R & D Canada,
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc82/p523341.pdf.

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.avionics-intelligence.com/articles/2008/12/avionics-designers-choose-sysgo-real-time-embedded-software-for-a400m-cargo-system.html
http://www.csl.sri.com/~rushby/abstracts/dasc08
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197414
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=13197414
http://www.cse.unsw.edu.au/~meyden/research/arch-filter.pdf
http://www.cse.unsw.edu.au/~meyden/research/arch-filter.pdf

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 58 of 63

[Del06] Rance DeLong, MLS with MILS?, slides, 2006,
http://www.cisr.us/events/downloads/guests/delong.pdf

[Del10] Rance J. DeLong, An Evaluation and Certification Scheme for MILS, Fourth
Annual Layered Assurance Workshop (LAW 2010), 2010,
http://fm.csl.sri.com/LAW/2010/law2010-09-DeLong.pdf.

[Del12a] Rance DeLong, The MilsTM Architecture -- a Foundation for Dependable
Systems, The Open Group Conference: Real-Time & Embedded Systems Forum,
2012, http://www.opengroup.org/public/member/proceedings/q212/23RT.htm

[Del12b] Rance DeLong, MILS Integration Protection Profile (MIPP) and the MIPP
Commentary (slides), The Open Group Conference, Barcelona, Spain, 2012.

[Dod83] Department of Defense, Trusted computer systems evaluation criteria
(Orange Book), DoD 5200.28-STD, 1983,
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt

[DO-297] RTCA SC-200 / EUROCAE WG-60, DO-297: Integrated Modular Avionics
(IMA) Development Guidance and Certification Considerations, November, 2005,
Radio Technical Commission for Aeronautics (RTCA), Inc., 1828 L St. NW., Suite
805, Washington, D.C. 20036.

[DPF09] Julien Delange, Laurent Pautet, Peter Feiler, Validating safety and security
requirements for partitioned architectures, Reliable Software Technologies--Ada-
Europe 2009, p. 30-43, 2009, Springer,
http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf.

[DPK10] Julien Delange, Laurent Pautet, Fabrice Kordon, Design, Verification and
Implementation of MILS systems, Proceedings of the 21th International Symposium
on Rapid System Prototyping, 2010, http://pagesperso-
systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf.

[Fr83] Lester J. Fraim, Scomp: A Solution to the Multilevel Security Problem,
Computer, vol. 16, no. 7, p. 26-34, 1983, IEEE.

[GH08] Olivier Gilles, Jerome Hugues, Validating requirements at model-level,
IDM'2008 5-6 juin Mulhouse, 2008, http://www.idm08.uha.fr/actes/p5.pdf.

[GN09] Tor Gjertsen, Nils Agne Nordbotten, Multiple independent levels of security
(MILS) - a high assurance architecture for handling information of different
classification levels, 2009, Norwegian Defence Research Establishment (FFI),
http://rapporter.ffi.no/rapporter/2008/01999.pdf.

[Gol73] Robert P. Goldberg, Architectural Principles for Virtual Computer Systems,
1973, Ph Thesis, Harvard, Cambridge, MA, http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=AD0772809.

[Gre08] Green Hills Software, INTEGRITY-178B Separation Kernel Security Target,
no. IN-ICR750-0100-GH01ST, May, 2008, http://www.niap-ccevs.org/cc-
scheme/st/vid10119/.

[HASK] Bundesamt für Sicherheit in der Informationstechnik (BSI), Sirrix AG security
technologies, Protection Profile for High-Assurance Security Kernel: Version 1.14,
June, 2008,

http://fm.csl.sri.com/LAW/2010/law2010-09-DeLong.pdf
http://www.opengroup.org/public/member/proceedings/q212/23RT.htm
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://julien.gunnm.org/data/publications/article-dpf-rst09.pdf
http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf
http://pagesperso-systeme.lip6.fr/Fabrice.Kordon/pdf/2010-RSP.pdf
http://rapporter.ffi.no/rapporter/2008/01999.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0772809
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0772809

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 59 of 63

http://web.archive.org/web/20110726034516/http://www.sirrix.com/media/downloads/
54500.pdf.

[HHOAF05] W. Scott Harrison, Nadine Hanebutte, Paul W. Oman, Jim Alves-Foss,
The MILS Architecture for a Secure Global Information Grid, The Journal of Defense
Software Engineering, Crosstalk: The Journal of Defense Software Engineering, vol.
18, no. 10, p. 20-24, Oct., 2005, http://www.crosstalkonline.org/storage/issue-
archives/2005/200510/200510-Harrison.pdf.

[Hou11] Carol S. Houck, Publications and Future Support for Separation Kernels,
May, 2011, http://www.niap-
ccevs.org/announcements/SKPP%20Email%20to%20Vendors.pdf.

[Int04] Intel Corporation, “IA-PC HPET (High Precision Event Timers) Specification”,
2004.

[Int11] Intel Corporation, “Intel® Virtualization Technology for Directed I/O”, 2011.

[ISA62433] International Society of Automation, Security for industrial automation and
control systems, ISA-62443, 2013, http://isa99.isa.org/Documents/Drafts/.

[JH11] S. Jin and J. Huh, “Secure MMU: Architectural Support for Memory Isolation
among Virtual Machines,” in 41st International Conference on Dependable Systems
and Networks - Workshops (DSN-W), 2011, pp. 217-222.

[Kar05] Paul A. Karger, Multi-Level Security Requirements for Hypervisors, Computer
Security Applications Conference, 21st Annual, 2005,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6161.

[Kem83] Richard A. Kemmerer, Shared Resource Matrix Methodology: An Approach
to Identifying Storage and Timing Channels, ACM Transactions on Computer
Systems, vol. 1, no. 3, p. 256-277, 1983,
http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-kemmerer.pdf .

[KS08] P.A. Karger, D.R. Safford, "I/O for Virtual Machine Monitors: Security and
Performance Issues," Security & Privacy, IEEE , vol.6, no.5, pp.16,23, Sept.-Oct.
2008

[KW07] Robert Kaiser, Stephan Wagner, Evolution of the PikeOS Microkernel,
MIKES: 1st International Workshop on Microkernels for Embedded Systems, 2007,
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf.

[KW08] David Kleidermacher, Mike Wolf, MILS Virtualization for Integrated Modular
Avionics, Digital Avionics Systems Conference (DASC), p. 1.C.3-1-1-C.3-1-8, 2008,
IEEE.

[Lam71] Butler W. Lampson, Protection, Proc Fifth Annual Princeton Conference on
Information Sciences and Systems, p. 437-443, 1971, Princeton,
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf.

[LRP+11] Joseph Loyall, Kurt Rohloff, Partha Pal, Michael Atighetchi, A Survey of
Security Concepts for Common Operating Environments, Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops (ISORCW), 2011 14th IEEE
International Symposium on, p. 244-253, 2011, https://dist-

http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-Harrison.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200510/200510-Harrison.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6161
http://www.cs.ucsb.edu/~sherwood/cs290/papers/covert-kemmerer.pdf
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 60 of 63

systems.bbn.com/people/krohloff/papers/2011/Loyall-WORNUS-CameraReady-
Paper1.pdf.

[MIM+13] Daniel Münch, Ole. Isfort, Kevin Müller, Michael Paulitsch, Andreas
Herkersdorf. Hardware-Based I/O Virtualization for Real-Time Embedded Avionic
Systems Using PCIe SR-IOV. International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS XIII) (in submission),
2013.

[MP97] Donald Mackenzie, Garrel Pottinger, Mathematics, Technology, and Trust:
Formal Verification, Computer Security, and the U.S. Military, IEEE Annals of the
History of Computing, vol. 19, no. 3, p. 41-59, 1997.

[MPS+12] Kevin Müller, Michael Paulitsch, Reinhard Schwarz, Sergey Tverdyshev,
Holger Blasum, MILS-Based Information Flow Control in the Avionic Domain: A Case
Study on Compositional Architecture and Verification, Digital Avionics Systems
Conference (DASC) proceedings, 2012, IEEE.

[MPT+12] Kevin Müller, Michael Paulitsch, Sergey Tverdyshev, Holger Blasum,
MILS-Related Information Flow Control in the Avionic Domain: A View on Security-
Enhancing Software Architectures, Workshop on Open Resilient human-aware
Cyber-physical Systems (WORCS 2012), 2012, IEEE,
http://dx.doi.org/10.1109/DSNW.2012.6264665.

[MWTG00] W. Martin, P. White, F. Taylor, A. Goldberg, Formal Construction of the
Mathematically Analyzed Separation Kernel, Proc 15th International Conference on
Automated Software Engineering, p. 131-141, 2000.

[NG12] Nils Agne Nordbotten, Tor Gjertsen, Towards a certifiable MILS based
workstation, 2012, Norwegian Defence Research Establishment (FFI),
http://www.ffi.no/no/Rapporter/12-00049.pdf.

[NLI06] Thuy D. Nguyen, Timothy E. Levin, Cynthia E. Irvine, High robustness
requirements in a Common Criteria protection profile, Innovative Architecture for
Future Generation High-Performance Processors and Systems, International
Workshop on, p. 66-78, 2006, IEEE Computer Society, Los Alamitos, CA, USA,
http://calhoun.nps.edu/public/handle/10945/7141.

[NP12] Jan Nowotsch, Michael Paulitsch, “Leveraging Multi-Core Computing
Architectures in Avionics,” European Dependable Computing Conference (EDCC),
2012.

[PG74] Gerald J. Popek, Robert P. Goldberg, Formal Requirements for Virtualizable
Third Generation Architectures, Comm. ACM, vol. 17, p. 412-421, July, 1974.

[Pri92] P.J. Prisaznuk, Integrated Modular Avionics, National Aerospace and
Electronics Conference (NAECON), p. 39-45, 1992.

[RAV07] Jeffrey Choi Robinson and Jim Alves-Foss, A High Assurance MLS File
Server, 2007.

[RD07] John Rushby, Rance DeLong, MILS Integration Protection Profile, 2007,
http://www.csl.sri.com/users/rushby/slides/mipp-jan07.pdf.

http://dx.doi.org/10.1109/DSNW.2012.6264665
http://www.ffi.no/no/Rapporter/12-00049.pdf
http://calhoun.nps.edu/public/handle/10945/7141
http://www.csl.sri.com/users/rushby/slides/mipp-jan07.pdf

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 61 of 63

[RHN+07] Jeffrey Choi Robinson, W. Scott Harrison, Nadine Hanebutte, Paul Oman,
and Jim Alves-Foss, Implementing Middleware for Content Filtering and Information
Flow Control, CSAW ’07, 2007.

[RI00] John Scott Robin, Cynthia E. Irvine, Analysis of the Intel Pentium’s Ability to
Support a Secure Virtual Machine Monitor, Proceedings of the 9th USENIX Security
Symposium, 2000, www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA423654.

[RKG07] R. Ramaker, W. Krug, W. Phebus, Application of a Civil Intergrated Modular
Architecture to Military Transport Aircraft, Digital Avionics Systems Conference
(DASC), 2007, p. 2.A.4-1 to 2.A.4-10, 2007.

[Rom08] George Romanski, Management of Configuration Data in an IMA System,
Digital Avionics Systems Conference (DASC), p. 1.B.5-1 - 1.B.5-10, 2008, IEEE.

[Rus81] John Rushby, Design and verification of secure systems, Eighth ACM
Symposium on Operating System Principles, p. 12-21, 1981,
http://www.sdl.sri.com/papers/sosp81/sosp81.pdf.

[Rus01] John Rushby, Formal Verification of McMillan’s Compositional Assume-
Guarantee Rule, 2001, SRI International,
http://ftp.csl.sri.com/users/rushby/papers/mcmillan.pdf.

[Rus08a] John Rushby, Separation and Integration in MILS (The MILS Constitution),
SRI-CSL-08-XX, February, 2008, SRI International,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.9324.

[Rus08b] John Rushby, A Formal Model for MILS Integration, no. SRI-CSL-08-XX,
May, 2008, SRI International,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.9005.

[SBY+13] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy David Terei,
Alejandro Russoa, “Eliminating Cache-Based Timing Attacks with Instruction-Based
Scheduling,” in Proc. of the 18th European Symposium on Research in Computer
Security (ESORICS) 2013, 2013, p. 718-735.

[SG95] Mary Shaw, David Garlan, Formulations and formalisms in software
architecture, Computer Science Today, p. 307-323, 1995, Springer, http://www-
2.cs.cmu.edu/~Compose/ProgCodif.pdf.

[Shi06] Kanna Shimizu, «The Cell Broadband Engine processor security architecture,
Hardware solutions to problems insoluble in software»,
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/, IBM
DeveloperWorks®, April 2006.

[SKPP] Information Assurance Directorate, U.S. Government Protection Profile for
Separation Kernels in Environments Requiring High Robustness. Version 1.03, June,
2007, http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/.

[SLN+10] F. L. Sang, É. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting an
I/OMMU vulnerability,” 5th International Conference on Malicious and Unwanted
Software (MALWARE), pp. 7-14, 2010.

[SNAC10] Systems and Network Analysis Center / Information Assurance
Directorate, Separation Kernels on Commodity Workstations, March, 2010,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.9324
http://www-2.cs.cmu.edu/~Compose/ProgCodif.pdf
http://www-2.cs.cmu.edu/~Compose/ProgCodif.pdf
http://www.ibm.com/developerworks/power/library/pa-cellsecurity/
http://www.niap-ccevs.org/cc-scheme/pp/pp_skpp_hr_v1.03/

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 62 of 63

http://www.niap-
ccevs.org/announcements/Separation%20Kernels%20on%20Commodity%20Workst
ations.pdf.

[SPL95] Olin Sibert, Phillip A. Porras, Robert Lindell, The Intel 80x86 Process
Architecture: Pitfalls for Secure Systems, Security and Privacy, Proceedings, 1995
IEEE Symposium on, p. 211-222, 1995.

[SRIOV] PCI-SIG. Single Root I/O Virtualization and Sharing Specification - Revision
1.01. Technical report, 2010.

[SS75] Jerome H. Saltzer, Michael D. Schroeder, The Protection of Information in
Computer Systems, Proceedings of the IEEE, vol. 63, no. 9, p. 1278-1308, 1975,
http://web.mit.edu/Saltzer/www/publications/protection/,
\urlhttp://www.cs.virginia.edu/~evans/cs551/saltzer/.

[Ste91] Daniel F. Sterne, On the Buzzword `Security Policy', IEEE Computer Society
Symposium on Research in Security and Privacy, p. 219-230, 1991.

[SV10] F. L. Sang and V. Nicomette, “Attaques DMA peer-to-peer et contremesures,”
in In Proc. of Symposium sur la Sécurité des Technologies de l’Information et des
Communications (SSTIC 2011), 2011, pp. 147-174.

[Tan07] Andrew S. Tanenbaum, Modern Operating Systems, 3rd edition, 2007,
Prentice Hall, Upper Saddle River, NJ, USA.

[TBF13] Sergey Tverdyshev, Holger Blasum, Igor Furgel, Compositional Assurance:
EURO-MILS ST/PP for Separation Kernel Based Virtualization, ICCC 2013,
http://www.fbcinc.com/e/iccc/day2.aspx.

[TCG11] Trusted Computing Group™, «TPM Main Specification»,
http://www.trustedcomputinggroup.org/resources/tpm_main_specification, 2011.

[Til+13] Axel Tillequin, and others, “Project Requirements: Classification, Cross-
domain analysis and High-Level Architecture”, EURO-MILS Deliverable D11.1

[Tri12] Benoît Triquet, “Mixed Criticality in Avionics”, Airbus, in Workshop on Mixed
Criticality Systems, European Commission, February, 2012,
http://cordis.europa.eu/fp7/ict/embedded-systems-
engineering/presentations/triquet.pdf.

[Uch05] Gordon Uchenik, Protection Profile for Partitioning Communications Systems
in Environments Requiring High Robustness, V0.85 (available on request from
Objective Interface Systems).

[Uch07] Gordon Uchenik, Partitioning Communications System for Safe and Secure
Distributed Systems, Digital Avioncis Systems Conference (DASC), p. 2.E.5-1 -
2.E.5-8, 2007.

[UV05] Gordon M. Uchenik, W. Mark Vanfleet, Multiple independent levels of safety
and security: high assurance architecture for MSLS/MLS, Military Communications
Conference, 2005. MILCOM 2005. IEEE, p. 610-614, 2005.

[Wik13] Wikipedia, Comparison of platform virtual machines - Wikipedia, The Free
Encyclopedia, 2013,

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/triquet.pdf
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/presentations/triquet.pdf

MMIILLSS AArrcchhiitteeccttuurree

December 2014 Page 63 of 63

http://en.wikipedia.org/w/index.php?title=Comparison_of_platform_virtual_machines&
oldid=567335721 [Online; accessed 15-August-2013].

[Win13] Wind River, Wind River VxWorks MILS Platform 3.0, 2013,
http://www.windriver.com/products/platforms/vxworks-mils/MILS-3_PN.pdf.

[Wis11] SKPP Sunset Q & A, 2011, http://www.niap-
ccevs.org/announcements/SKPP%2520Sunset%2520Q%26A.pdf.

[WM12] Carl Waldspurger and Mendel Rosenblum. 2012. I/O virtualization. Commun.
ACM 55, 1 (January 2012), 66-73. DOI=10.1145/2063176.2063194
http://doi.acm.org/10.1145/2063176.2063194

[WOM02] Mike Weller, Roger Odell, Lee MacLaren, Partitioning Kernel Protection
Profile Report, 2002,
http://web.archive.org/web/20031209153634/http://www.omg.org/docs/security/02-
11-07.doc .

[WP08] Alex Wilson, Thierry Preyssler, Incremental Certification and Integrated
Modular Avionics, Digital Avionics Systems Conference (DASC), p. 1.E.3-1 - 1.E.3-8,
2008, IEEE.

[WR08] P. Willmann, S. Rixner, and A. L. Cox, “Protection Strategies for Direct
Access to Virtualized I/O Devices,” in 2008 USENIX Annual Technical Conference,
2008, pp. 15-28.

[WR11] R. Wojtczuk and J. Rutkowska, “Following the White Rabbit: Software
Attacks Against Intel VT-d Technology,” 2011.

[YF13]Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low Noise, L3
Cache Side-Channel Attack,” 2013, pp. 1-9.

[YYW08] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman, “IBM Research Report
- Direct Device Assignment for Untrusted Fully-Virtualized Virtual Machines,” IBM,
2008.

[ZAF06] Jie Zhou, Jim Alves-Foss, Architecture-Based Refinements for Secure
Computer Systems Design, Proc. Policy, Security and Trust, November, 2006.

[ZAF08] Jie Zhou, Jim-Alves Foss, Security policy refinement and enforcement for
the design of multi-level secure systems, Journal of Computer Security, vol. 16, p.
107-131, 2008, IOS Press.

[ZSP+12] Yinping Zhou, Yulong Shen, Qingqi Pei, Xining Cui, Yahui Li, Security
Information Flow Control Model and Method in MILS, 2012 Eighth International
Conference on Computational Intelligence and Security

http://doi.acm.org/10.1145/2063176.2063194
http://web.archive.org/web/20031209153634/http:/www.omg.org/docs/security/02-11-07.doc
http://web.archive.org/web/20031209153634/http:/www.omg.org/docs/security/02-11-07.doc

Secure European virtualisation for trustworthy applications in critical domains.
The mission of the EURO-MILS project is to develop a solution for virtualization
of heterogeneous resources and provide strong guarantee for isolation of
resources by means of Common Criteria certification with usage of formal
methods.

www.euromils.eu

for further Information please contact the coordinator

TECHNIKON Forschungs- und Planungsgesellschaft mbH

coordination@euromils.eu

