

 EEUURROO--MMIILLSS

SSeeccuurree EEuurrooppeeaann VViirrttuuaalliissaattiioonn ffoorr

TTrruussttwwoorrtthhyy AApppplliiccaattiioonnss iinn CCrriittiiccaall DDoommaaiinnss

UUsseedd FFoorrmmaall MMeetthhooddss

Project number 318353

Project acronym EURO-MILS

Project title EURO-MILS:
Secure European
Virtualisation for Trustworthy
Applications in Critical
Domains

Start date of the project 1st October, 2012

Duration 36 months

Programme FP7/2007-2013

Project website www.euromils.eu

Editors/Authors:

Holger Blasum, Oto Havle, Sergey Tverdyshev (SYSGO AG)

Contributors (ordered according to beneficiary numbers):

Sergey Tverdyshev, Oto Havle, Holger Blasum (SYSGO AG)

Bruno Langenstein,Werner Stephan (Deutsches Forschungszentrum für künstliche Intelligenz / DFKI GmbH)

Abderrahmane Feliachi, Yakoub Nemouchi, Burkhart Wolff (Université Paris Sud)

Cyril Proch (Thales Communications & Security SA)

Freek Verbeek (Open University of The Netherlands)

Julien Schmaltz (Technische Universiteit Eindhoven)

Further information on the EURO-MILS Project: http://www.euromils.eu

The research leading to these results has received funding from the European Union’s Seventh

Framework Programme (FP7/2007-2013) under grant agreement number 318353.

UUsseedd FFoorrmmaall MMeetthhooddss

Whitepaper 2015

Executive Summary
This document consists of three chapters:

 Chapter 1 describes how Isabelle/HOL works and how to use it in a certification process in
a sound way.

 Chapter 2: Style Guide. It describes how to write Isabelle theories so that they are suitable
for collaborative work and human readers in a certification context.

 Chapter 3: Compliance statement. We state how, in the EURO-MILS project, the
developed theories are compliant with (1) and (2).

Contents
1 Using Isabelle/HOL in Certification Processes: A System Description and

Mandatory Recommendations 1
1.1 Introduction . 1
1.2 Common Criteria: Normative Context . 2

1.2.1 Certification Level: Different Use of Formal Methods 3
1.2.2 Requirements Addressed by Formal or Semiformal Models 4
1.2.3 Formal Methods: Other Requirements Impacted 4

1.3 Isabelle/HOL: Architecture, Language and Methodology 5
1.3.1 The Isabelle System Architecture . 5
1.3.2 Isabelle and its Meta-Logic . 7
1.3.3 Foundations of HOL and its Specification Constructs 8
1.3.4 Isabelle Proofs . 18
1.3.5 Isabelle/HOL System Features . 20

1.4 Methodological Recommendations for the Evaluator 21
1.4.1 On the Use of SML . 22
1.4.2 Axioms and Bogus-Proofs . 23
1.4.3 On the Use of External Provers . 23

1.5 Extensions of Isabelle: Guidelines for the Evaluator 24
1.5.1 Example: Isabelle/Simpl . 24
1.5.2 Example: The HOL-TestGen Test-Generation System 25
1.5.3 By the Way: Test vs. Proof . 26

1.6 Recommendations for CC Certifications . 26
1.6.1 A Refinement Based Approach for CC Evaluation 26

1.7 Summary . 27
1.7.1 Background References . 27
1.7.2 Concluding Remarks and a Summary 28

2 Style Guide 30
2.1 Introduction . 30
2.2 Rules . 30

2.2.1 Basics . 30
2.2.2 Modeling Style . 31
2.2.3 Formal Content . 32
2.2.4 Layout Principles . 34

2.3 Conclusion . 35

3 Compliance Statement 36
3.1 Compliance to Section 1.7.2 . 36
3.2 Compliance to Section 2 . 37

Bibliography 38

Used Formal Methods

Chapter 1

Using Isabelle/HOL in Certification Pro-
cesses: A System Description and Manda-
tory Recommendations

Chapter Authors: Yakoub Nemouchi, Abderrahmane Feliachi, Burkhart Wolff and Cyril Proch

Abstract: Interactive theorem proving is a technology of fundamental importance for mathe-
matics and computer science. It is based on expressive logical foundations and implemented in a
highly trustable way. Applications include very large mathematical proofs and semi-automated
verifications of complex soft- and hardware systems. The architecture of contemporary interac-
tive provers such as Coq, Isabelle, or the HOL family goes back to the influential LCF system
from 1979, which has pioneered key principles like correctness by construction for primitive
inferences and definitions, free programmability in userspace via SML, and toplevel command
interaction.

The Isabelle System developed into one of the top 5 systems for the logically consistent de-
velopment of formal theories. In particular the instance of the Isabelle system with higher-order
logic called Isabelle/HOL is therefore a natural choice as a formal methods tool as required by
the Common Criteria on the higher assurance levels EAL5 to EAL7.

The purpose of this paper is to give a brief introduction into the system, an overview over
the methodology and its tool support, and high-level mandatory guidelines for evaluators of
certifications using Isabelle. This paper is intended to be a complement of a similar text by
French certification authorities [Jae08].

Keywords: Formal Methods; Certification; Compliance; Common Criteria; Isabelle; HOL

1.1 Introduction
Formal methods describe a set of mathematically based techniques and tools for specification,
analysis and verification of computer systems. They are mainly used to describe and to ver-
ify, in a logically consistent way, some properties of these systems. The formal specification
and verification approaches usually rely on some underlying logic. The logical foundation of
theorem provers makes them a very convenient basis of any formal development, where the
specification and the verification activities can be gathered in one formal environment.

Interactive theorem proving is a technology of fundamental importance for mathematics and
computer science. It is based on expressive logical foundations and implemented in a highly
trustable way. Applications include huge mathematical proofs and semi-automated verifications
of complex hard- and software systems. The architecture of contemporary interactive provers
such as Coq [Wie06, §4], Isabelle [Wie06, §6] or the HOL family [Wie06, §1] goes back to the

October 2015 Page 1 of 40

Used Formal Methods

influential LCF system [MW79] from 1979, which has pioneered key principles like correctness
by construction for primitive inferences and definitions, free programmability in userspace via
SML, and toplevel command interaction.

Recently, theorem provers have been widely used in the area of computer systems security
and certification and, for instance, in Common Criteria. The Common Criteria (CC) [Mem06]
is a well-known and recognized computer security certification standard. The standard is cen-
tered around the role of the developer, who provides implementation but also “artefacts of
compliance with the level of security targeted”, while the evaluator “confirms the compliance
of the information supplied” as well as determines “completeness, accuracy and quality” of the
deliverables.

Especially wrt. “completeness, accuracy and quality” of specifications and proofs, formal
methods and especially mechanically proof checking techniques can push the trust and the
reproducibility of the results to levels not obtainable by a human certification expert alone.
This explains why at its higher assurance levels, the CC requires the use of formal methods for
specification and verification. A well-established formal specification formalism must be used
to model the system and the different security policies. A reliable theorem prover is needed to
prove and verify different properties of the specification. Recent theorem provers offer rich and
powerful formal environments that are very suitable for both activities.

Among the important number of theorem provers available nowadays, we concentrate on
the Isabelle theorem prover1. Following [Hal08], the Isabelle System, developed into one of the
top five systems for the logically consistent development of formal theories. In particular the
instance of the Isabelle system with higher-order logic called Isabelle/HOL is therefore a natural
choice as a formal methods tool as required by the Common Criteria on the higher assurance
levels EAL5 to EAL7.

The purpose of this paper is to bring together a body of system information that is generally
known in the Isabelle community, but largely scattered in system documentations and papers.
This includes a brief introduction into the system, a general overview over the methodology and
covers certain aspects of the tool support. The paper culminates in some high-level mandatory
guidelines and recommendations for both developers and evaluators of certification documents
using Isabelle. It attempts to be a complement to the previous document written by Jaeger
[Jae08].

The paper proceeds as follows: at first in Sec. 1.2, we give some general information from
Common Criteria standard about formal methods, modeling and associated requirements. In
Sec. 1.3, we provide a guided tour over the Isabelle system, while in Sec. 1.4, we refer to
methodological issues of Isabelle/HOL leading to recommendations for evaluators. In Sec. 1.5
we chose two major extensions of Isabelle, one for code-verifications, one for model-based
testing, and discuss their advantages and limits in a high-level certification process. The fi-
nal discussion contains a little survey on publications on the topic as well as a summary for
evaluators.

1.2 Common Criteria: Normative Context
For high levels of certification (i.e. for EAL5 to EAL7) in the Common Criteria [Mem06] some
requirements introduce the use of formal methods at diverse phases of the design process. Re-
garding to the level of security target required, the utilisation of formal methods match different
objectives.

1At time writing, the current version is Isabelle2013-2.

October 2015 Page 2 of 40

Used Formal Methods

1.2.1 Certification Level: Different Use of Formal Methods
The next table resumes for each level the main requirements and impacts from formal method-
ology point of view.

level EAL Objective
EAL5 This EAL represents a meaningful increase in assurance from EAL4 (methodically

designed, tested, and reviewed) by requiring semiformal design descriptions, a more
structured (and hence analysable) architecture, and improved mechanisms and/or pro-
cedures that provide confidence that the TOE will not be tampered with during devel-
opment.

EAL6 This EAL represents an important increase in assurance from EAL5 (semi-formally de-
signed and tested) by requiring more comprehensive analysis, a structured representa-
tion of the implementation, more architectural structure (e.g. layering), more compre-
hensive independent vulnerability analysis, and improved configuration management
and development environment controls.

EAL7 This EAL represents a meaningful increase in assurance from EAL6 (semi-formally
verified design and tested) by requiring more comprehensive analysis using formal rep-
resentations and formal correspondence, and comprehensive testing.

In addition to the normative definitions of the security levels, the CC standard defines the
possibility of intermediate levels of security when a requirement is evaluated at a higher level
than required by the level targeted. The addition of the symbol ”+” represents this kind of
evaluation (for example EAL4+).

With regard to high level certifications, the requirements on formal methods are more and
more intrusive and the models are more and more detailed (from a high level architecture for
EAL5 to a structured formal design for EAL7).

The Common Criteria defines two different roles the developer and evaluator. These two
different roles shall comply different requirements of CC or more precisely, each requirement
of CC is declined in different actions for developer and evaluator. From a general point of view,
the developer shall:

• realize the design, the documentation, the implementation and the validation of the target.

• provide artifacts and elements of compliance with the level of security targeted.

In another hand the evaluator shall:

• confirm the compliance of the information supplied (by the developer) with requirements
of the security level,

• determine the completeness, the accuracy and in a general manner the quality of the
deliverables.

This document is intended to detail these two tasks of an evaluator with respect to imple-
mentations and validations done with the Isabelle/HOL system.

October 2015 Page 3 of 40

Used Formal Methods

1.2.2 Requirements Addressed by Formal or Semiformal Models
With regard to high level certifications, the main requirements addressed by the use of formal
methods are:

• ADV SPM.1 requires a formal TOE security policy model (SPM for short). This model
is generally a high level model which captures the main security properties and abstract
behavior of the target.

• ADV FSP.6 requires a semi-formal functional specification (FSP for short) with an ad-
ditional formal specification. This second constraint concerns an intermediate functional
level of design and it is considered as pertinent from a formal point of view, to manage a
formal model (and not a semi-formal) which is a refinement of the initial model defines
for ADV SPM.1. The use of this intermediate formal model is efficient to define a formal
specification.

• ADV TDS.6 requires a complete semi-formal and modular design with high-level (TOE)
design specification (TDS). This final design requirement introduces the architecture of
the target and the notions of modules and interfaces. The main objective is to define and
simply specify the structure of the design and provide a proof of correspondence between
specifications of the subsystems and the functional specification.

This simple overview of some CC requirements implies that a formal approach based on
a formal refinement definition is compliant to assure consistency between the different models
and the diverse views and objectives considered in these requirements.

1.2.3 Formal Methods: Other Requirements Impacted
Other requirements for high level certification (EAL7) are not directly connected with formal
methods but they can be addressed by the use of formal methods (see chapter 1.5.2):

• ATE FUN.2: The objectives are for the developer to demonstrate that the tests in the
test documentation are performed and documented correctly, and to ensure that testing
is structured such as to avoid circular arguments about the correctness of the interfaces
being tested. Although the test procedures may state pre-requisite initial test conditions in
terms of ordering of tests, they may not provide a rationale for the ordering. An analysis
of test ordering is an important factor in determining the adequacy of testing, as there is a
possibility of faults being concealed by the ordering of tests.

• AVA VAN.5: A methodical vulnerability analysis is performed by the evaluator to ascer-
tain the presence of potential vulnerabilities. The evaluator performs penetration testing,
to confirm that the potential vulnerabilities cannot be exploited in the operational environ-
ment for the TOE. Penetration testing is performed by the evaluator assuming an attack
potential of High.

The generation of test cases from a formal model can be an interesting approach to optimize
the efforts of the modeling and the formal proof: this formal specification-based testing ap-
proach is not a classic approach in industrial world but seems compliant with the two previous
CC requirements.

October 2015 Page 4 of 40

Used Formal Methods

1.3 Isabelle/HOL: Architecture, Language and Methodology
In the following, we will discuss the two questions:

How is Isabelle built?

How should Isabelle be used?

In the context of certifications of critical hard- and software systems, an understanding of its
architecture and the underlying methodology may help to understand why Isabelle, if correctly
used, can be trusted to a significantly higher extent than conventional software, even more
than other automated theorem provers (in fact, Sascha Böhme’s work on proof reconstruction
[BW10] inside Isabelle revealed errors the SMT solver Z3[MB08] that is perhaps the most
tested conventional system currently on the market ...). Of course, Isabelle as software “contains
errors”. However, its architecture is designed to exclude that errors allow to infer logically false
statements, and methodology may help to exclude that correctly inferred logical statements are
just logical artifacts, or logically trivial statements, which can be impressing stunts without any
value.

1.3.1 The Isabelle System Architecture
We will describe the layers of the system architecture bottom-up one by one, following the
diagram Fig. 1.1.

The foundation of system architecture is still the Standard ML (SML,[MTM97]) program-
ming environment; the default PolyML implementation
http://www.polyml.org supports nowadays multi-core hardware which is heavily used
in recent versions for parallel and asynchronous proof checking when editing Isabelle theories.

On top of this, the logical kernel is implemented which comprises type-checking, term-
implementations and the management of global contexts (keeping, among many other things,
signature information and basic logical axioms). The kernel provides the abstract data-types
thm, which is essentially the triple (Γ,Θ, φ), written Γ `Θ φ, where Γ is a list of meta-level
assumptions, Θ the global context, containing, for example, the signature and core axioms of
HOL and the signature of group operators, and a conclusion φ, i. e. a formula that is established
to be derivable in this context (Γ,Θ). Intuitively, a thm of the form Γ `Θ φ is stating that the
kernel certifies that φ has been derived in context Θ from the assumptions Γ.

There are only a few operations in the kernel that can establish thm’s, and the system
correctness depends only on this trusted kernel. On demand, these operations can also log proof-
objects that can be checked, in principle, independently from Isabelle; in contrast to systems
like Coq, proof objects do play a less central role for proof checking which just resides on the
inductive construction of thm’s by kernel inferences shown, for example, in [PP10].

On the next layer, proof procedures were implemented - advanced tactical procedures that
search for proofs based on higher-order rewriting like simp, tableau provers such as fast,
blast, or metis , and combined procedures such as auto. Constructed proofs were always
checked by the inference kernel.

The next layer provides major components — traditionally called packages — that imple-
ment the specification constructs such as constant definitions type abbreviations, type defini-
tions, etc., as discussed in Sec. 1.3.3 in more detail. Packages may also yield connectors to
external provers (be it via the sledgehammer interface or via the smt interface to solvers such

October 2015 Page 5 of 40

Used Formal Methods

kernel

 proof procedures
 simp, fast, blast, auto ...

packages
datatype, fun,
record, ...

integrators
sledge, smt

ATP's
Vampire, Spass, E ...

Add-on Tools:
Simpl, HOL-TestGen,
HOL-Boogie, Sec Toolbox, HOL-OCL ...

Extern IDE's
 VCC, Argo/UML ...

PIDE Framework + jEdit

Scala System Interface

integrators
sledgehammer

multi-core ready SML

c
o
d
e

g
e
n

d
o
c

g
e
n

ATP's
zchaff

Proof obj.

Figure 1.1: The diagram shows the different layers like execution environment, kernel, tactical
level and proof-procedures, component level (providing external prover integration like Z3,
specification components, and facilities like the code generator, the Scala API to the system
bridging to the JVM-World, and the Prover-IDE (PIDE) layer allowing for asynchronous proof
and document checking.

as Z3), machinery for (semi-trusted) code-generators as well as the Isar-engine that supports
structured-declarative and imperative “apply style” proofs described in Sec. 1.3.4.

The Isar - engine [Wen02] parses specification constructs and proofs and dispatches their
treatment via the corresponding packages. Note that the Isar-Parser is configurable; therefore,
the syntax for specification constructs like constant definitions can be modified and adapted,
as well as the automated proofs that derive from them the characterizing properties of a data-
type (distinctness and injectivity of the constructors, as well as induction principles) as thm’s
available in the global context Θ thereafter. As we will see in Sec. 1.3.3, specification con-
structs represent the heart of the methodology behind Isabelle: new specification elements were
only introduced by “conservative”; i. e. logically safe mechanisms that maintain the logical
consistency of the theory by construction. Packages provide the technical support for these
specification constructs; internally these constructs introduce declarations and axioms of a par-
ticular form and enforce the user to provide proofs for methodological side-conditions (like
the non-emptiness of the carrier set defining a new type or termination for a recursive function
definition).

We mention the last layer mostly for completeness: Recent Isabelle versions posses also
an API written in Scala, which gives a general system interface in the JVM world and allows

October 2015 Page 6 of 40

Used Formal Methods

to hook-up Isabelle with other JVM-based tools or front-ends like the jEdit client. This API,
called the “Prover IDE” or “PIDE” framework, provides an own infrastructure for controlling
the concurrent tasks of proof checking. The jEdit-client of this framework is meanwhile cus-
tomized as default editor of Isabelle sessions; thus jEdit became the default user-interface the
user has primarily access to. PIDE and its jEdit client manage collections of theory documents
containing sequences of specification constructs, proofs, but also structured text, code, and
machine-checked results of code-executions. It is natural to provide such theory documents as
part of a CC evaluation documentation.

1.3.2 Isabelle and its Meta-Logic
The Isabelle kernel natively supports minimal higher-order logic called Pure. It supports for
just one logical type prop the meta-logical primitives for implication =⇒ and universal
quantification

∧
x. P x. The meta-logical primitives can be seen as the constructors of rules

for various logical systems that can be represented inside Isabelle; a conventional “rule” in a
logical textbook:

A1 · · ·Am

C
where x1 . . . xn are free variables (1.1)

can be directly represented via the built-in quantifiers
∧

and the built-in implication =⇒ as
follows in the Isabelle core logic Pure:∧

x1 . . . xn . A1 =⇒ . . . =⇒ Am =⇒ C
(1.2)

. . . where the variables x1, . . . , xn are called parameters, the premises A1, . . . , Am assumptions
and C the conclusion; note that =⇒ binds to the right. Also more complex forms of rules as
occurring in natural deduction style inference systems like:[

A
]
···
B

A→ B

(1.3)

can be represented by (A =⇒ B) =⇒ A→ B. Thus, the built-in logic provided by the Isabelle
Kernel is essentially a language to describe (systems of) logical rules and provides primitives to
instantiate, combine, and simplify them. Thus, Isabelle [NPW02] is a generic theorem prover.
New object logics can be introduced by specifying their syntax and natural deduction inference
rules. Among other logics, Isabelle supports first-order logic, Zermelo-Fraenkel set theory and
the instance for Church’s higher-order logic HOL. Moreover, Isabelle is also a generic system
framework (roughly comparable with Eclipse) which offers editing, modeling, code-generation,
document generation and of course theorem proving facilities; to the extent that some users use
it just as programming environment for SML or to write papers over checked mathematical
content to generate LATEX output. Many users know only the theorem proving language isar!
for structured proofs and are more or less unaware that this is a particular configuration of
the system, that can be easily extended. Note that for all of the aforementioned specification
constructs and proofs there are specific syntactic representations in isar!.

October 2015 Page 7 of 40

Used Formal Methods

Higher-order logic (HOL) [Chu40, And86, And02] is a classical logic based on a simple
type system. It is represented as an instance in Pure. HOL provides the usual logical connec-
tives like ∧ , → , ¬ as well as the object-logical quantifiers ∀x. P x and ∃x. P x; in
contrast to first-order logic, quantifiers my range over arbitrary types, including total functions
f :: α ⇒ β. HOL is centred around extensional equality = :: α ⇒ α ⇒ bool. HOL is
more expressive than first-order logic, since, e. g., induction schemes can be expressed inside
the logic. Being based on a polymorphically typed λ-calculus, HOL can be viewed as a combi-
nation of a programming language like SML or Haskell, and a specification language providing
powerful logical quantifiers ranging over elementary and function types.

Isabelle/HOL is the session based on the embedding of HOL into Isabelle/Pure. Note The
that simple-type system as conceived by Church for HOL has been extended by Hindley/Milner
style polymorphism with type-classes similar to Haskell[WB89, Wen97].

1.3.3 Foundations of HOL and its Specification Constructs
The core of the logic is done via an axiomatization of the core concepts like equality, impli-
cation, and the existence of an infinite set, the rest of the library is derived from this core by
logically safe (“conservative”) extension principles which are syntactically identifiable speci-
fication construction in Isabelle files. In the following, we will briefly describe the axiomatic
foundation of Isabelle/HOL and describe the most common conservative extension principles.

Since the core of the HOL logic is given by an axiomatization, the question of its consistency
must be settled. The first “authoritative” book that gives a consistency proof of HOL is Gor-
don/Melhams book[GM93]. In chapter 15 (page 193 ff), a semi-informally described model of
a Universe U is presented which must be closed under non-empty-subsets, products, functions,
power sets, existence of an infinite set and choice. It is informally (but convincingly) argued
that U can be built with ZFC minus the replacement axiom.2 For the core of the HOL logic,
an interpretation function is given in [GM93], pages 196 ff, into U thus providing a model for
the HOL axiomatization (and thus its consistency proof relative to ZFC minus replacement).
This interpretation provides the modern semantic understanding of Standard-HOL, i. e. stan-
dard models for HOL with parametric polymorphism. Note, however, that Isabelle type-classes
are not covered by this model (the more powerful Isabelle locale’s, however, is a specification
construct that can be reduced to basic HOL).

The text[GM93] appeared meanwhile online in a slightly revised version:

Norrish, M., Slind, K., et al.: The HOL System: Logic, 3rd edn., http://
hol.sourceforge.net/documentation.html

The Gordon/Melham book[GM93] also contains first (semi-formal) proofs about the conser-
vatively of machine-supported conservative extension schemes based on the HOL-model in U.
Four “classic” core constructions were defined and analyzed:

• constant definition

• constant specification

• type definition

• type specification.

2This part of the text is attributed to Andrew Pitts.

October 2015 Page 8 of 40

http://hol.sourceforge.net/documentation.html
http://hol.sourceforge.net/documentation.html

Used Formal Methods

Logical conservativity means: whenever a theory T was consistent, its theory extension T’ is
also consistent.

Meanwhile, there had been a number of followup papers attempting to formalize these
proofs of conservativity of the classical extension schemes. The most notable references are:

• John Harrison: Towards self-verification of HOL Light. In: International Joint Conference
on Automated Reasoning (IJCAR). Volume 4130 of the series Lecture Notes in Computer
Science. Springer (2006).

• A more recent paper (addressing the problem of formal proof of conservativity of the
above extension schemes) is: Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott
Owens: HOL with Definitions: Semantics, Soundness, and a Verified Implementation.
In: International Conference on Interactive Theorem Proving (ITP), Volume 8558 of the
series Lecture Notes in Computer Science pp 308-324. Springer (2014).

The methodology of HOL systems is based on the idea that apart from the core of the HOL
logic, which is necessarily axiomatized, the library (comprising a theory of products, sets, lists,
maps, number-theories, etc.) is built by solely by the above-listed conservative extensions, for
which special machine-support is provided. This machine support is extended to data-types,
inductive definitions, and (extensible) records, which internally use the four classic ones. This
machine support is represented in Fig. 1.1 under the label “packages”.

The Presentation of the core HOL in Isabelle.

In the entire library (so the Isabelle session ”HOL” which is also referred to as ”Main” in theory
imports), there are only 11 axioms in form of foundational axioms of the HOL-logic. These 11
axioms are equivalent to the classical ones of [GM93]:

1. The equality symbol is axiomatized as an equality, i. e. it is reflexive, extensional, and
satisfies the Leibniz-property (equals can be replaced by equals in any context P). The
Hilbert-Operator is bound to choose the value characterized by equality:
axiomatization where
refl: t = (t::α) and
subst: s = t =⇒P s =⇒P t and
ext: (

∧
x::α. (f x ::β) = g x) =⇒(λx. f x) = (λx. g x) and

the_eq_trivial: (THE x. x = a) = (a::’a)

2. The following axioms establish a relation between implication and rule formation, and
between implication and equality, as well as True, ∀ x. P x and False and (which are
abbreviations for ((λx::bool. x)= (λx. x)), (P = (λx. True)) and (∀ P. P),
respectively):
axiomatization where
impI: (P =⇒Q) =⇒P →Q and
mp: P →Q =⇒P =⇒Q and
iff: (P→Q) →(Q→P) →(P=Q) and
True_or_False: (P=True) ∨(P=False)

3. Finally, a type ind is postulated to have an interpretation by an infinite carrier set.
Instead of the more common form to state the axiom of infinity: ∃f::ind⇒ind.
injective(f)∧¬surjective(f), this axiom comes in two parts over two constants
Zero_Rep and Suc_Rep:

October 2015 Page 9 of 40

Used Formal Methods

axiomatization Zero_Rep :: ind and Suc_Rep :: ind ⇒ind where
Suc_Rep_inject: Suc_Rep x = Suc_Rep y =⇒x = y and
Suc_Repnot_Zero_Rep: Suc_Rep x \<neq> Zero_Rep

On this basis, the type of natural numbers is constructed via an inductive definition, the
integer and rational numbers via quotient constructions, etcpp.

4. A further axiom is devoted for another form of the Hilbert-Choice operator:

axiomatization Eps :: (’a ⇒bool) ⇒’a where
someI: P x =⇒P (Eps P)

An Isabelle/HOL version coming from a trusted distribution site should only have these
axioms. Note that in the ”src/HOL” folder containing the system libraries, there are many
example theories and sub-sessions that actually state their own axioms; a prudent evaluator
should make sure that none of these sessions were included.

Conservative Extensions.

Besides the logic, the instance of Isabelle called Isabelle/HOL offers support for specification
constructs mapped to conservative extensions schemes, i. e. a combination of type and constant
declarations as well as (internal) axioms of a very particular form. We will briefly describe
here type abbreviations, type definitions, constant definitions, datatype definitions, primitive
recursive definitions, well-founded recursive definitions as well-as Locale constructions. We
consider this as the “methodologically safe” core if the Isabelle/HOL system.

Using solely these conservative definition principles, the entire Isabelle/HOL library is built
which provides a logically safe language base providing a large collection of theories like sets,
lists, Cartesian products α× β and disjoint type sums α+ β, multi-sets, orderings, and various
arithmetic theories which only contain rules derived from conservative definitions.

Type Abbreviations (Synonyms).

For example, typed sets are built in the Isabelle libraries via type synonyms on top of HOL as
functions to bool; consequently, the constant definitions for set comprehension and membership
are as follows3:

type synonym α set = α⇒ bool

definition Collect :: (α⇒ bool)⇒ α set — set comprehension
where Collect S = S

definition member ::α⇒ α set⇒ bool — membership test
where member s S = S s

Isabelle’s powerful syntax engine is instructed to accept the notation {x | P} for Collect λx. P
and the notation s ∈ S for member s S. As can be inferred from the example, constant
definitions are axioms that introduce a fresh constant symbol by some closed, non-recursive
expressions; these types of axioms are logically safe since they work like an abbreviation. The
syntactic side-conditions of the axioms are mechanically checked, of course. It is straightfor-
ward to express the usual operations on sets like ∪ , ∩ ::αset⇒ αset⇒ αset as definitions,
too, while the rules of typed set-theory are derived by proofs from them.

3To increase readability, the presentation is slightly simplified.

October 2015 Page 10 of 40

Used Formal Methods

Datatypes.

Similarly, a logical compiler is invoked for the following statements introducing the types option
and list:

datatype α option = None | Someα

datatype α list = Nil | Cons α (α list)
(1.4)

Here, [] and a#l are alternative syntax for Nil and Cons a l; moreover, [a, b, c] is defined as
alternative syntax for a#b#c#[]. Similarly, the option type shown above is given a different
notation: α option is written as α⊥, None as ⊥, and SomeX as xXy. Internally, recursive
datatype definitions are represented by type- and constant definitions. Besides the construc-
tors None, Some, Nil and Cons, the statement above defines implicitly the match-operation
case x of ⊥ ⇒ F | xay ⇒ G a respectively case x of [] ⇒ F | (a#r) ⇒ G a r. From the
internal definitions (not shown here) many properties are automatically derived like distinctness
[] 6= a#t, injectivity of the constructors or induction schemes.

Well-founded Recursive Function Definitions.

Finally, there is a parser for primitive and well-founded recursive function definition syntax.
For example, the sort-operation can be defined by:

fun ins :: [α :: linorder, α list]⇒ α list
where ins x [] = [x]

ins x (y#ys) = if x < y thenx#y#ys else y#(ins x ys)
(1.5)

fun sort :: (α :: linorder) list⇒ α list
where sort [] = []

sort(x#xs) = ins x (sort xs)
(1.6)

which is again compiled internally to constant and type definitions. Here, α :: linorder re-
quires that the type α is a member of the type class linorder. Thus, the operation sort works
on arbitrary lists of type (α :: linorder) list on which a linear ordering is defined. The internal
(non-recursive) constant definition for the operations ins and sort is quite involved and requires
a termination proof with respect to a well-founded ordering constructed by a heuristic. Never-
theless, the logical compiler will finally derive all the equations in the statements above from
this definition and makes them available for automated simplification.

The theory of partial functions is of particular practical importance. Partial functions α ⇀ β
are then defined as functions α⇒ β option supporting the usual concepts of domain dom f ≡
{x | f x 6= None}) and range ran f ≡ {x | ∃y. f y = Some x}. Partial functions can
be viewed as “maps” or dictionaries; the empty map is defined by � ≡ λx. None, and the
update operation, written p(x 7→ t), by λ y. if y = x then Some t else p y. Finally, the override
operation on maps, written p1⊕ p2, is defined by λx. case p1 x of None⇒ p2x | Some X ⇒
Some X .

Type definitions.

Type definitions allows for a safe introduction of a new type. Other specification constructs, for
example datatype, are based on it. The underlying construction is simple: any non-empty subset
of an existing type can be turned into new type. This is achieved by defining an isomorphism

October 2015 Page 11 of 40

Used Formal Methods

between this set and the new type; the latter is introduced by two fresh constant symbols (repre-
senting the abstraction and the concretization function) and three internally generated axioms.
As a simple example, consider the definition of type containing three elements. This type is
represented by the first three natural numbers:

typedef three = {0: :nat, 1, 2}
apply (rule tac x = 0 in exI)
apply blast
done

(1.7)

In order to enforce that the representing set on the right hand side is non empty, the package
requires for this new type a proof of non-emptiness:

typedef three = {0::nat, 1, 2}
1. ∃ x. x ∈ {0, 1, 2}

(1.8)

To use this new type we need to finish the proof of non empty set started by the use of typedef
which can be done differently. For example we can finish the proof using existing theorems on
the logical operator ∃ in Isabelle/HOL. To see all Isabelle’s theorems related to ∃ we use the
Isabelle command find_theorems. The query searches for theorems whose name contains
an “ex” substring. One of the results is:

find theorems name: ex

HOL.exI: ?P ?x =⇒ ∃ x. ?P x
(1.9)

The searched theorems is applied in the following. In our case, the Isabelle proof method
ruletac is used, a resolution step, which unifies the theorem HOL.exI against the first proof goal
in a resolution step:

apply (rule tac x = 0 in exI)
apply blast
done

Its application in the proof allows to replace the schematic variable ?x by the constant 0 in our
proof; this is specified by the key word in followed by the name of the theorem. The other
the schematic variable ?P is automatically filled in (using higher-order unification), which is
possible since only one solution remains. The remainder of the proof consists of a call to the
highly automated method blast, which does the trick for the necessary set-theoretic proof.

It remains to point out that the same proof can be done by different proof-style called struc-
tured proof or Isar-proof. The same proof can be represented in this style as follows:

typedef three = {0::nat, 1, 2}
proof
show 1 ∈ {0: : nat, 1, 2}
by blast
qed

(1.10)

After finishing the proof about the definition of this new type, many theorems will be deduced
automatically by Isabelle. We can check the new deduced theorems related to this new type

October 2015 Page 12 of 40

Used Formal Methods

by using the command find theorems. In the concrete example, there are 82 new theorems
deduced that were related to this type definition.

find theorems name: three

searched for:
name: ”three”
found 82 theorem(s) (40 displayed)

(1.11)

Inductively defined predicates.

This section is dedicated to the most important definition principle after recursive functions
and datatypes: inductively defined predicates. We will introduce a simple example: the set of
even (natural) numbers. For more complicated examples see [TN]. The specification construct
allows for building the least set which is closed under a given collection of introduction rules;
in our case: one rule that states 0 is an even number, and the other one rule that states that if
we add 2 to every even number we will get an even number. Using the keyword inductive, we
declare the constant even to be a predicate that allows as to get the set of natural numbers with
desired properties. (Note that sets and boolean functions are treated the same.)

inductive even :: nat ⇒ bool

where
zero[intro!]: even 0
step[intro!]: even n =⇒ even(Suc(Suc n))

(1.12)

Note that the declaration of the rules comes, as usual in many places in the Isar-language,
with an instrumentation: for both rules, the names zero and step were introduced, and with
a number of attributes it can be stated how the given rule or thm should be used in proofs:
the keyword [intro!] indicates that they should be used as introduction rules in proof search.
After the inductive statement, Isabelle generates a fixed point definition for even and proves
theorems about it. These theorems include the introduction rules specified in the declaration,
an elimination rule for case analysis and an induction rule for the global judgment. To inspect
these theorems we can again use find theorems which results in:

find theorems name: even

three. even. cases:
even ?a =⇒ (?a = 0 =⇒ ?P) =⇒
(
∧

n. ?a = Suc (Suc n) =⇒ even n =⇒ ?P) =⇒ ?P
three. even. induct:
even ?x =⇒ ?P 0 =⇒
(
∧

n. even n =⇒ ?P n =⇒ ?P (Suc (Suc n))) =⇒ ?P ?x
three. even. zero: even 0
three.even.step: even ?n =⇒ even (Suc (Suc ?n))

(1.13)

We can refer to these theorems by automatically-generated names, for example:
three. even. cases, three. even. induct . . .

Type classes.

We will introduce another important concept. Type-classes can be seen as a simple modu-
larization concept (similar locales, but with less expressive power), which is particularly well

October 2015 Page 13 of 40

Used Formal Methods

integrated into the type system. Similar to Haskell[WB89, Wen97], type classes κ restrict type
variables to belong to a particular class of types having common properties. The introduction
of a new class plus and its operation ⊕ is done by this Isabelle/Isar fragment:

class plus =

fixes plus :: α⇒ α⇒ α (infixl⊕ 70)
(1.14)

instantiation nat :: plus
begin
primrec plus nat :: nat⇒ nat⇒ nat
where
(0: : nat) ⊕ n = n
Suc m ⊕ n = Suc (m ⊕ n)

instance proof qed
end

(1.15)

The type of the operation ⊕ carries a class constraint ′α :: plus on its type variable, meaning
that only types of class plus can be instantiated for ′α. To locally instantiate a type-class by an
other existing type we use the command instantiation. For example to instantiate plus on nat
we write the key word instantiation and the name of existing type that we want to instantiate,
and the type of the operation which is in our case nat⇒ nat⇒ nat. Now we define the ⊕
function and give a semantic to to it on type nat. Note that all function names are written by
the combination of the name of the class operation and the name of the instance which the class
operation will be applied on (example plus nat). In case of uncertainty, these names may be
inspected using the command print context as follow:

instantiation nat :: plus

begin
print context
. . .
Isabelle output will be
nat: : three. plus
plus nat ≡ three. plus classe. plus: : nat⇒ nat⇒ nat

(1.16)

In general, assumptions were assumed in the context of the instantiations, proofs for those
assumptions are mandatory in instantiations. Such proofs are done using the command
instantiation before the end of the context of the instantiations. In our example, the proof
is a standard phrase necessary for technical reasons. We can also add many instantiations for
the operations. For example the operation ⊕ of the class plus can be applied on the type of
products:

instantiation prod :: (plus, plus)plus
begin
fun plus prod :: α*β ⇒ α*β ⇒ α*β

where
(x, y) ⊕ (w, z) = (x ⊕ y, w ⊕ z)

instance proof qed
end

(1.17)

October 2015 Page 14 of 40

Used Formal Methods

Now, in a term (3, 4, 5)⊕ (1, 2, 3), the type inference will infer that there is actually a series of
instantiations that define this product on triples ... More in depth explanations for type classes
are in [TN].

While type-classes have a strictly weaker expressive power that Isabelle’s Locales to be
discussed in the sequel, they have the advantage that the types can be inferred completely auto-
matic; their annotation can therefore omitted in most cases. Furthermore, the lack of dependent
types (a concept existing in Coq) can in some practical cases by compensated by type-classes; it
is, for example, perfectly possible to define the bit vector type “32 word” and “64 word” inside
a word-library providing types “′α word” (here, “32” is a syntactic synonym for a type-class of
types that are representable by 32 bits). Thus, type-classes can establish dependencies of types
from values which is impossible in a standard Hindley-Milner type-system.

Locales.

Locales are Isabelle’s approach for dealing with parametric theories [Bal10]. They have been
designed as a module system that can adequately represent the complex inter-dependencies
between structures found in abstract algebra, but have proven fruitful also in other applications.
We will briefly discuss major features of locales.

As a prerequisite, recall that the general format of a logical rule represented in Isabelle/Pure
is: ∧

x1 . . . xn . A1 =⇒ . . . =⇒ Am =⇒ C

On the level of the Isar-language, a rule of this form can equivalently represented as:

fixes x1 . . . xn
assumes A1

and . . .
and Am

show C

(1.18)

Parameters and assumptions together form a local context. A formula C is a theorem in a local
context if it is a conclusion. A locale is just local context that have been made persistent. As
a particular feature, they allow for introducing local syntax for the xi and individual prover
instrumentation for the assumptions. To the user, however, they provide powerful means for
declaration, combination, and for reuse of theorems proved in them. The following example is
the formalization of partial order with locale partial order.

locale partial order =

fixes less equal :: nat⇒ nat⇒ bool (infixl . 50)
assumes refl [intro, simp]: x . x
and anti sym[intro]: x . y =⇒ y . x =⇒ x = y
and trans[trans]: x . y =⇒ y . z =⇒ x . z

(1.19)

In this locale the parameter is less equal, which is binary predicate with infix syntax .. The
parameter syntax is available in the subsequent assumptions, which correspond to the familiar
partial order “axioms”. Isabelle recognizes unbound names as free variables. In locale assump-
tions, the are implicitly universally quantified. That is, x . y =⇒ y . z =⇒ x . z in fact
means

∧
x y z. x . y =⇒ y . z =⇒ x . z. There are two Isar commands to inspect

October 2015 Page 15 of 40

Used Formal Methods

a locale: print locale lists the names of all locales of current theory; print locale α prints the
parameters and assumptions of locale α; the variation print locale!α additionally outputs the
conclusions that are stored in the locale. For the Isar command:

print locale partial order (1.20)

the system produces the output:

locale partial order

fixes less equal :: nat⇒ nat⇒ bool
assumes partial order op .

(1.21)

Analogously, for:

print locale ! partial order (1.22)

the output

locale partial order

fixes less equal :: nat⇒ nat⇒ bool
assumes partial order op .
notes partial order axioms =
(partial order op .) [attribute < attribute >]
notes refl = (?x . ?x) [HOL. intro, simp]
and anti sym = (?x . ?y =⇒ ?y . ?x =⇒ ?x = ?y) [HOL. intro]
and trans = (?x . ?y =⇒ ?y . ?z =⇒ ?x . ?z) [trans]

(1.23)

is produced. Here, the keyword notes denotes a conclusion element. There is two con-
clusions, which were added automatically. Instead there is only one assumption, namely
partial order(op .). The locale declaration has introduced the predicate partial order to the
theory. This predicate is called the locale predicate. Its definition may be inspected by the
command:

partial order def (1.24)

corresponding to the output:

partial order ?less equal ≡
(∀x. ?less equal x x)∧
(∀x y. ?less equal x y −→ ?less equal y x −→ x = y)
(∀x y z. ?less equal x y −→ ?less equal y z −→ ?less equal x z)

(1.25)

Each conclusion has foundational theorem as counterpart in the theory. Technically, this is
simply the theorem composed of local context and conclusion. For the transitivity, for example,
we have the output:

partial order ?less equal =⇒ ?less equal ?x ?y =⇒ ?less equal ?y ?z
=⇒ ?less equal ?x ?z (1.26)

The specification of a locale is fixed, but its list of conclusions may be extended through Is-
abelle commands that take a target argument. In the following, two examples on two Isabelle

October 2015 Page 16 of 40

Used Formal Methods

commands that accept a target. The first example on the command definition and the second
example is on the command lemma.

definition (in partial order)
strict less :: nat⇒ nat⇒ bool
where x / y = x . y ∧ x 6= y

(1.27)

The strict order strict less with infix syntax / is defined in terms of the locale parameter
less equal and the general equality of the object logic we work in. The definition generates
a constant partial order. strict less with definition partial order. less def :

partial order?less equal =⇒
partial order. less ?less equal ?x ?y =
(?less equal ?x ?y ∧ ?x 6= ?y)

(1.28)

The context of a locale can be extended by a block of commands, delimited by begin and end,
like when we start a new theory. The main restriction when we use a block of commands, is
that the block refer to the same target (the same locale). If the block of commands follows a
locale declaration, that makes this locale the target. In other cases, the target for a block may
be given withe context command. In the example below, we will introduce two new definitions
for the locale partial order, in those new definitions we will introduce the notion of infimum
ad supremum for partial orders.

context partial order
begin
definition is inf
where is inf x y i =
(i . x ∧ i . y ∧
(∀z. z . x ∧ z . y −→ z . i))

definition is sup
where is sup x y s =
(x . s ∧ y . s ∧
(∀z. x . z ∧ y . z −→ s . z))

end

(1.29)

ML Code.

It is possible inside Isabelle documents to directly access the underlying ML-layer of the system
architecture, and even extend the environment of the underlying ML interpreter/compiler. One
can include the fragment:

ML{* fun fac x = if x = 0 then 1 else x * fac(x-1); *}

in a document and then later on evaluate:

ML{* fac 20; *}

Since Isabelle itself sits as a collection of ML modules in this SML environment, it is possible
to access its kernel and tactical functions:

ML{* open Tactic;
fun mis x = res_inst_tac [(x, x)] {@thm exI} 1*}

October 2015 Page 17 of 40

Used Formal Methods

which defines a new tactic that applies just the existential-introduction rule of HOL. This is the
key to build large and own tactic procedures and even tools inside the Isabelle environment.
Note that the fragment {@thm exI} is called an antiquotation; it is expanded before being
passed to the SML compiler with code that accesses the thm exI (see section Sec. 1.3.3, pp8.)
in the Isabelle database for theorems. By additional SML-code, this tactic can be converted
into a Isar-method, which can be bound to own syntax inside the Isar-language. Thus, the proof
language is technically extensible by own, user-defined proof-commands (see [Wen] for the
details).

1.3.4 Isabelle Proofs
In addition to types, classes and constants definitions, Isabelle theories can be extended by
proving new lemmas and theorems. These lemmas and theorems are derived from other existing
theorems in the context of the current theory. Isabelle offers various ways to construct proofs for
new theorems, we distinguish two main categories: forward and backward proofs. In addition to
Isabelle proofs, some external proofs can be integrated – in a logically safe way – and compiled
into an Isabelle proof.

Local forward proofs.

The goal of a forward proof is to derive a new theorem from old ones. This is done either by
instantiating some unknowns in the old theorems, or by composing different theorems together.

The instantiation can be done using the of and where operators as follows: thm[of
inst1 inst2 ...] or thm[where var1=inst1 and var2=inst2 ...]. If we con-
sider for example the existential introduction theorem called exI and given by ?P ?x =⇒
∃x. ?P x. The unknown variable x can be instantiated with a fixed variable a using the
following command exI[of _ a] which is equivalent to exI[where x=a]. Note that when
using of the instances of the variables appear in the same order of appearance of the unknown
variables in the theorems. Consequently, we can avoid instantiating a variable by giving a
dummy value in the position of its corresponding instance.

The second way of deriving theorems is by composing different theorems together using
the OF or THEN operators. The first operator OF is used to compose one theorem to others. For
a theorem th1 given by A =⇒B and a theorem th2given by A’, the theorem th1[OF th2]

results from the unification of A and A’ and thus instantiating the unknowns in B. Theorems
with multiple premises can be composed to more than one theorem given as arguments to the
OF operator. For example, given the conjunction introduction theorem conjI given by ?P =⇒
?Q =⇒?P ∧?Q and the reflexivity theorem ref given by ?x = ?x, the composition of these
theorem conjI[OF refl[of a] refl[of b]] results in the following theorem a = a ∧
b = b. In a similar way, the THEN operator is used to compose different theorems together.
The theorem th1[THENth2] is obtained by applying the rule th2 to the theorem th1. For
example, composing a theorem th1 given by a = b with the symmetry rule sym given by
?s = ?t =⇒?t = ?s is written th1[THENsym] and the result is b = a.

Global backward proofs.

The usual and mostly used proof style is the backward or goal-directed proof style. First, a
proof goal is introduced then the proof is performed by simplifying this goal into different
subgoals and, finally, prove the resulting subgoals from existing theorems. The proofs are build

October 2015 Page 18 of 40

Used Formal Methods

using natural deduction by applying some existing (proved) inference rules. For each logical
operator, two kinds of rules are defined: introduction and elimination rules.

The backward proofs can be structured in two different ways:

1. Apply style proofs, where the proof goal is simplified using a succession of rules appli-
cations. This results in a so-called apply-script, describing the proof steps. An example
of such a proof is given in the following:

lemma conj rule: JP; QK =⇒ P ∧ (Q ∧ P)

apply (rule conjI)
apply assumption

apply (rule conjI)
apply assumption
apply assumption

done

(1.30)

Although this proof style is easy to apply, long apply-scripts can become unreadable and
hard to maintain. A more structured and safe way to write the proofs is by using the Isar
language.

2. Structured Isar proofs allow for writing sophisticated and yet still fairly human-readable
proofs. The Isar language defines a set of commands and shortcuts that offer more control
on the proof state. An example of a structured induction proof is given in the following:

lemma
fixes n: : nat
show 2 * (

∑
i = 0. . n. i) = n * (n + 1)

proof (induct n)
case 0
have 2 * (

∑
i = 0. . n. i) = (0: : nat)

by simp
also have (0: : nat) = 0 * (0 + 1)
by simp
finally show ?case .

next
case (Suc n)
have 2*(

∑
i = 0. . Suc n. i) = 2*(

∑
i = 0. . n. i) + 2 * (n + 1)

by simp
also have 2 * (

∑
i = 0. . n. i) = n * (n + 1)

by (rule Suc. hyps)
also have n * (n + 1) + 2 * (n + 1) = Suc n * (Suc n + 1)
by simp
finally show ?case .

qed

(1.31)

For the sake of this presentation, we appeal to an “immediate intuition” of a mathematically
knowledgeable reader; for detailed introduction into the structured proof language, the reader
is referred to the Isar Reference Manual of the System documentation.

October 2015 Page 19 of 40

Used Formal Methods

Locales can be directly referred to in proofs. For example, one could in a constructivist
version of HOL (see src/HOL/ex/Higher_Order_Logic.thy) state and prove:

locale classical =
assumes classical : (A =⇒ A) =⇒ A

theorem (in classical)
Peirce’s Law : ((A→ B)→ A)→ A
proof
...
qed

(1.32)

Thus, the effect of the “(in classical)” clause in the example above is to add additional as-
sumptions into the local context. A skeptical evaluator might therefore insist on proofs of the
existence of witnesses for the locale, i. e. a proof for ∃x. partial order x. Since in a classical
setting the existence of a function can be stated via the Hilbert-operator, that decides for a Tur-
ing machine that it terminates for a given input, a very skeptical evaluator might even insist on
a constructive witness for these existence proofs.

1.3.5 Isabelle/HOL System Features
Finally, Isabelle/HOL manages a set of executable types and operators, i. e., types and operators
for which a compilation to SML, OCaml, Scala, or Haskell is possible. Setups for arithmetic
types such as int have been done allowing for different trade-offs between trust and efficiency.
Moreover any datatype and any recursive function are included in this executable set (providing
that they only consist of executable operators). Of particular interest for evaluators is the use of
the Isar command:

valid sort[1, 7, 3] (1.33)

In the context of the definitions Fact 1.5, it will compile them via the code-generator to SML
code, execute it, and output:

[1, 3, 7] (1.34)

This provides an easy means to inspect constructive definitions and to get easy feedback for
given test examples for them. See the part “Code generation from Isabelle/HOL theories” by
Florian Haftmann from the Isabelle system documentation for further details.

Of particular interest for evaluators or certifications are Isabelle’s features for semantically
supported typesetting: within the document element:

text{* This is text containing λ’s and β’s ... *}

for example, arbitrary LaTeX code can be inserted for using technical and mathematical notation
of annotations of formal document elements. Inside a text-document, the document antiquota-
tion mechanism already mentioned in Sec. 1.3.3 can be applied:

text{* Text containing theorems like {@thm exI} ... *}

which results in a print of theorems directly from their formal Isabelle presentation. It is possi-
ble to define new antiquotations, for example to track security requirements or security claims
in theorems or tests. A detailed description of document antiquotations is found in the “Isar

October 2015 Page 20 of 40

Used Formal Methods

Reference Manual” by Makarius Wenzel from the Isabelle system documentation. It is even
possible to define own antiquotations in Isabelle for categories of the common criteria like pro-
tection profiles, security targets, requirements, security properties etc. For all these entities, be
it informal or formal, declarations and applications of antiquotations can be used in text frag-
ments that allow for a direct consistency checking over the entire document. Since a concrete
setup for such mechanism offers a number of deviation points, we refrain in this document on
mandatory recommendations and refer to a future document on styleguide recommendations.

Evaluators are encouraged to use the Isabelle/jedit user-interface directly (and not just the
generated .pdf documentation), since it allows for an in-depth inspection and exploration of the
formal content of a theory: tooltips reveal typing information, evaluations of critical expressions
can often be done by the value ... document item, and operator-symbols occurring in HOL-
expressions were hyper-linked to referring definitions or binding occurrences. Note, however,
that a user-interface is a dozen system layers away from a Isabelle inference kernel which opens
the way for implementation errors in display and editing components, increasing the risk of
misinterpretations. A final check of an entire document should therefore be made in the (GUI-
less) build mode (which enforces also stronger checking).

1.4 Methodological Recommendations for the Evaluator
As said earlier, there are four potential dangers of a formal proof system that it wrongly accepts
the desired theorem “This operating system is secure”:

1. Inherent inconsistency of the logics (e. g., HOL) or inconsistent use of the logics (intro-
duction of inconsistent axioms by one way or the other).

2. The incorrect implementation of Isabelle the Isabelle Kernel and of the HOL instance in
it.

3. The incorrect package implementation realizing advanced specification constructions like
type definitions etc.

4. Since Isabelle is highly configurable, there is a certain danger of obfuscation of bogus-
proofs.

Beyond the more philosophical objections4, the risk outlined by the by first item is in fact
minimal: Higher-order logic (HOL) in itself is an extremely well studied object of academic
interest ([And86, GM93]; compare to the discussion in Sec. 1.3.3), and while there are known
limits in proving soundness and completeness inside a HOL-prover, they just stimulated a lot of
recent research to come a “formal proof over HOL in HOL” as close as possible, e.g. by adding
to HOL an axiom over the existence of a sufficiently large cardinal [Har06, MOK13].

The risk outlined by the second item is also very small. The reasons are threefold:

A Some of the aforementioned soundness proofs cover also the implementation aspects of
the core of a provers of the HOL-family (HOL-light, ...).

B The specific architecture of provers of the LCF family (HOL4, Isabelle, HOL-light, Coq)
enforces that any proof is actually checked by by this fairly small core.

4For example, the fundamental doubt in the existence of infinite sets[And86]...

October 2015 Page 21 of 40

Used Formal Methods

C These core-inferences can optionally be protocoled in an proof-object which can, in prin-
ciple, in case of serious doubt be checked by another implementation of a HOL-prover.
However, since these objects tend to be very large, this approach requires decent engi-
neering. Fortunately, this should only be necessary in exceptional cases.

The risk of the third item is minimal as far as the described standard conservative standard
extension schemes such as type_synonym’s, datatype’s, definition’s and fun’s,
typedef’s, specification’s, inductive’s, type-classes and locales are concerned.
The same holds for diagnostic commands like type, term, valid, etc. that do not change
the global context of a theory. These are fairly well-understood schemes which have in parts
been proven formally correct for similar systems such as the HOL4 system[KAMO14]. These
schemes cover the largest parts of the Isabelle/HOL libraries. Here lies the main advantage
of the LCF-approach and the methodology to base libraries on conservative (logically safe)
definitions.

The risk is small as far as other standard extension schemes are concerned; since ex-
tension schemes generate internally axioms, there have been reported consistency prob-
lems with combinations of other extension schemes such as consts and defs as well as
defs (overloaded); the Isabelle reference manual points out that the internal checks of
Isabelle do not guarantee soundness.5

It remains the risk of item four, which is concerned with the resulting methodology in “how
to use Isabelle”. For very large theory documentations, it must be considered non-negligible.
It is the key-issue addressed in the remainder of this section.

1.4.1 On the Use of SML
As mentioned earlier, Isabelle is an open environment that allows via

ML{* SML ML code *}

to include arbitrary SML programs, in particular programs that make direct inferences on top
of the kernel. Per se, this use of Isabelle is not unsafe; critical parts of the HOL library use
this mechanism. Isabelle is designed to have user land SML code extensions, and the kernel
protects itself against logical inconsistencies coming from ML extensions. However, there are a
few deliberate opt-outs, and furthermore, it is in principle possible to obfuscate them in Isabelle
ML code such that an evaluator may be fooled by a text appearing to be an Isabelle proof
but isn’t in the sense of the inference kernel. Thus, besides the principle possibility that a
pretty-printed theorem does not state what it appears to state by some misuse of mathematical
notation (an inherent problem of any formal method), there is the possibility of fake-proofs as
a consequence of ML code and (re)-configurations of the ISAR proof language.

If SML-code is accepted in an evaluation, it has to be made sure — potentially by extra
justifications or external experts with Isabelle implementation expertise — that this code does
not implicitly generate axioms, registers oracles and defines proof methods equivalent to sorry
(or variants like sorry_fun) to be discussed in the sequel; in any case, the evaluation is sub-
stantially simpler if SML-code is strictly avoided.

5See Isabelle Isar-Reference Manual (Version 2013-2, pp. 103): “It is at the discretion of the user to avoid
malformed theory specifications!”

October 2015 Page 22 of 40

Used Formal Methods

1.4.2 Axioms and Bogus-Proofs
Obviously, when using the Isar axiomatization construct allowing to add an arbitrary ax-
iom, it is immediately possible to bring the system in an inconsistent state. The immediate
methodological consequence is to ban it from use in to be evaluated theories completely (such
that it is only internally used inside specification constructs in and and in the aforementioned
foundational axioms coming with the system distribution) and to restrict theory building on con-
servative extensions. This is also common practice in scientific conferences addressing formal
proof such as ITP.

However, there are more subtle ways to introduce an axiom that leads to inconsistency. First,
there is a mechanism in Isabelle to register oracles into the system [TN, Wen]. They can be used
for a particularly simple, but logically unsafe integration of external provers into Isabelle and
can be used inside self-defined tactics. Logically, an oracle is a function that produces axioms
on the fly. It is an instance of the axiom rule of the kernel, but there is an operational difference:
The system always records oracle invocations within proof-objects of theorems by a unique tag.
Of course, oracle invocations should again be avoided in a certified proof.

A particular instance of the oracle mechanism is the sorry proof method. This is method
is always applicable and closes any (sub)-proof successfully, and a useful means in top-down
proof developments in Isabelle. Unnecessary to repeat that no sorry statements should remain
in a proof document underlying certification. By the way, the system is by default in a mode in
which it refuses to generate proof documents containing sorry’s, only by explicitly putting it
in a mode called quick_and_dirty this can be overcome. There are several ways to activate
quick_and_dirty, by it by explicit ML statements like quick_and_dirty:=true, be
it in the ROOT.ML-files (till version 2013-1), or be it in the session- configuration files ROOT-
files (since version 2013).

Oracles and sorry’s are particularly dangerous in methodological foundation proofs (type
or type-class is non-empty, recursions well-founded), since the use of the the oracle-tag inside
the corresponding proof-objects gets lost on the level of type expressions. Thus, a sorry could
introduce inconsistent types whose “effects” could be used in bogus-proofs depending on them.

We will discuss this a little more in detail: Recall that deduction in Isabelle/HOL is centered
around the requirement that types and type-classes are non-empty. This is a consequence of the
fact that the β-reduction rule ((λx :: τ.E)E ′ → E[x := E ′]) is executed pervasively during
deduction, be in in resolution or rewriting steps. It is well-known however, that β-reduction
is unsound in the presence of empty types6. Thus, an obfuscated sorry in a methodological
proof leaves no other than very local traces in the proof objects and can be exploited much
later via an inconsistent type in a proof based on this type definition; the exploit could again be
obfuscated by another self-defined proof-method, say auto’ which will be hard to detect by
inspection. The only systematic way to rule out obfuscated bogus-proof is either by ruling out
ML-constructs or by checking all proof objects of the entire theory.

1.4.3 On the Use of External Provers
The Isabelle distribution comes with a number of external provers, namely:

• sledgehammer : its use is uncritical, since it remains completely extern to proof doc-
umentations and is only used for the generation of high-level Isabelle proofs, that were

6Consider the case of τ having a semantic interpretation into an empty set I(τ) = Ø: then the semantic
interpretation of the function (λx :: τ.E) must be in the function space: ØD = Ø where D is the space of
interpretations for the type τ ′ of E. Obviously, there is no possible result for the application ...

October 2015 Page 23 of 40

Used Formal Methods

certified by the kernel.

• blast, metis: these are internal devices but also uncritical, since their results were used
via a proof object certification.

• smt: this method uses, for example, the external SMT-solver Z3. The integration is
carefully made and uses no oracles - instead, a form of tactical proof re-construction
mechanism is used [BW10] that is logically safe.

Other external provers have to be considered carefully; in particular integrations using the
oracle-mechanism should be ruled out.

1.5 Extensions of Isabelle: Guidelines for the Evaluator
As said earlier, the ML code should be considered harmful in theories to be evaluated. There
are, however, a number of add-ons on Isabelle, which can be considered as tools in their own
right and which heavily use ML code inside.

1.5.1 Example: Isabelle/Simpl
Isabelle/Simpl is an verification environment built conservatively on Isabelle/HOL. It supports a
sequential imperative programming language, for which it defines its syntax, semantics, Hoare
Logics and a verification condition generator (again derived), which form together a com-
plete verification environment. Together with an (untrusted) parser that compiles C programs
into Isabelle/Simpl[GAK12], this particular environment follows a similar program verification
technique like Frama-C/Why/AltErgo ([CKK+12, FP13],http://alt-ergo.lri.fr) or
VCC/Boogie/Z3[BMSW10].

The entire environment is part of the Isabelle-oriented “Archive of formal Proofs”,
see http://afp.sourceforge.net/ in general and http://afp.sourceforge.
net/entries/Simpl.shtml in particular.

The environment has been used for one of the most ambitious code-verification projects
recently, the verification of the L4-Microkernel
(cf. http://www.ertos.nicta.com.au/research/l4.verified/, [KHS09]).

In itself, Isabelle/Simpl can be considered nearly as as “trustable” as Isabelle/HOL itself :
the library is built upon conservative extensions of the HOL -kernel, and the ML extensions
are done by Isabelle developers themselves and stood the test of the time. Program verification
proofs establishing that a Simpl-program is correct with respect its (pre-post-condition) speci-
fications can be handled by the same evaluation procedures as any other Isabelle development.

However, as in any process involving the verification of C programs, the C parser and its
transition from “real C” to the idealized imperative language Simpl has to be considered with a
wise dose of skepticism. Here is are whole spectrum of different glimpses possible: since the C
parser defines a semantics-by-translation for its fragment of C, the question remains unproven
that this semantics is faithful to the semantics of the real C compiler generating production-level
code (which involves questions on compiler correctness, semantic faithfulness of the execution
environment, correctness of compilation optimizations, hardware-correctness, etc.). The prob-
lem has been addressed via particular validation techniques of the parsing process [GAK12],
but is, in full generality, unsolvable.

October 2015 Page 24 of 40

http://alt-ergo.lri.fr
http://afp.sourceforge.net/
http://afp.sourceforge.net/entries/Simpl.shtml
http://afp.sourceforge.net/entries/Simpl.shtml
http://www.ertos.nicta.com.au/research/l4.verified/

Used Formal Methods

Figure 1.2: An Isabelle session showing the jEdit client as Isabelle Interface. The upper-left
sub-window allows one to interactively step through a test theory comprising test specifications
while the lower-left sub-window shows the corresponding system state of the spot marked in
blue in the upper window.

1.5.2 Example: The HOL-TestGen Test-Generation System
hol!-TESTGEN (see Fig. 1.2) is an interactive, i. e., semi-automated, test generation tool for
specification-based tests built upon Isabelle/HOL. Instead of using Isabelle/HOL as “proof as-
sistant,” it is used as modeling environment for the domain specific background theory of a
test (the test theory), for stating and logically transforming test goals (the test specifications),
as-well as for the test generation method implemented by Isabelle’s tactic procedures. In a
nutshell, the test generation method consists of:

1. a test case generation phase, which is essentially a equivalence partitioning procedure of
the input/output relation based on a cnf!-like normal form computation,

2. a test data selection phase, which essentially uses a combination of constraint solvers
using random test generation and the integrated SMT-solver Z3 [MB08],

3. a test execution phase, which reuses the Isabelle/HOL code-generators to convert the
instantiated test cases to test driver code that is run against a system under test.

A detailed account on the symbolic computation performed by the test case generation and test
selection procedures is contained in [BW13]. The test case generation method is basically an
equivalence partitioning combined with a variable splitting technique that can be seen as an
(abstract) syntax testing in the sense of the ISO 29199 specification [Int12, Sec. 5.2.1 and
5.2.4].

The equivalence partitioning separates the input/output relation of a program under test
(PUT), usually specified by pre- and post-conditions, into classes for which the tester has
reasons to believe that PUT will treat them the same.

October 2015 Page 25 of 40

Used Formal Methods

Figure 1.3: Refinement steps for a formal development approach compliant to CC

1.5.3 By the Way: Test vs. Proof
Of course, the hol!-TESTGEN approach inherits all glory, but also all limitations of a testing
approach: The entire specification is reduced via specific test purposes and underlying test hy-
pothesis (“pick one out of the equivalence class, and it’s going to be ok for all class members”)
to a finite number of tests to be checked. These purposes and hypotheses may be difficult to
justify and need careful inspection, more difficult than having just a universal statement over
the entire input/output relation. On the other hand, testing can establish confidence over the
real system, and makes no modeling assumptions — like the Simpl-approach — over the un-
derlying hardware, the correct modeling of behavior of hardware components such as sensors,
the compiler, and the equivalence of the assumed operational semantics of the used program-
ming language(s) with the actually executed one. For this reason, it can be safely stated that for
certifications of the highest-levels, a suitable combination of test and proof techniques will be
necessary. Proofs for the higher levels of the models establishing the desired security properties
in an TOE, tests for establishing that the assumptions made in the lower levels of the models
correspond to the reality in the TOE.

1.6 Recommendations for CC Certifications

1.6.1 A Refinement Based Approach for CC Evaluation
Figure 1.3 presents a refinement scheme which implements different refinement steps from se-
curity policy model SPM to implementation. With this approach, the properties demonstrated
on an abstract SPM are formally preserved down to the levels of the functional specification
model FSP and a TOE specification design model, the TSD. At each level of abstraction the
dedicated model and its associated proofs demonstrate the security properties and are compli-
ant with the CC requirement. The use of a formal refinement methodology demonstrates the
consistency between each refined model and preserves the properties demonstrated at high level
of abstraction.

October 2015 Page 26 of 40

Used Formal Methods

The evaluation of this kind of approach can be conducted in three different phases by the
evaluator:

• Phase 1: Verification of the proof of the SPM formal specification. On the initial abstract
model, a verification shall be conducted to check the relevance of the security objectives
modeling in the formal model with the informal specification. A second point is the
verification of the model soundness to assure than the model is not inconsistent (refers to
chapter 1.4.2).

• Phase 2: Refinement of the SPM formal specification. A first step of this phase is the ver-
ification of the refinement process and methodology. On each refinement, verifications on
the properties and on the soundness of the model are conducted. From the initial abstract
model, on each intermediate concrete model, the evaluator checks the traceability (i.e.
the traceability of the requirements) between models. An informal link can be consid-
ered between the last formal model of the TDS and the implementation. A bi-directional
detailed traceability of the security requirements shall be managed between this two dif-
ferent artefacts to verify the implementation of the security requirements and than the
implementation contains only desired requirements 7.

• Phase 3: General and transverse activities. This last phase consists mainly of the verifica-
tion on the proofs and on justifications on the tools used as support for development and
design. The complete traceability from the security target to the implementation is ver-
ified included traceability between each refinement steps of formal models. During this
phase, the evaluator replay the proofs and check the consistency of the formal properties
and assumptions defined on the environment and the context (see 1.3.5 last paragraph for
details of facilities supplied by Isabelle/HOL). The use of keywords to report the proof
of parts of the proof obligations is forbidden (for example the use of the sorry proof
method, see chapter 1.4.2 for details).

When formal methods are used, some practices should be applied to facilitate the work of
the evaluator and be more efficient.

• Formal models should be defined in accordance with some naming convention informa-
tion and is a huge help for traceability.

• Formal models should be define in accordance with “coding” rules ([Jae08]). The proofs
associated can be replay.

• Documentation and deliveries should respect templates and integrate traceability with re-
quirements or elements from input specifications. From this point, the use of the Isabelle
interface should be interesting with regard to its functionalities, refers to 1.3.5.

1.7 Summary

1.7.1 Background References
The most notable text describing the scientific history behind the LCF-family of HOL provers
is done by by Mike Gordon[Gor00]. It covers the beginning of the entire research programme

7to check than no parts of the code violate the security properties by side effects.

October 2015 Page 27 of 40

Used Formal Methods

from 1972 to the mid-80ies, ranging from foundational issues of the logic over contributions
to type-systems (as the “Hindley-Milner-Polymorphism”)[Mil78] to the issue of the practical,
safe implementation of rewrites and decision procedures [Pau99].

The LCF research programme was in parallel to another notable source of nowadays inter-
active theorem proving technologies: the Automath-project. In 1968, N.G. de Bruijn designs
the first computer program to check the validity of general mathematical proofs, using typed
λ-calculi as a direct means to represent proof objects as such. The emphasis of this programme
was initially on proof-checking; de Bruijn’s system Automath eventually checked every propo-
sition in a primer that Landau had written for his daughter on the construction of real numbers as
Dedekind cuts. A descendant of this family, which also has deeply influenced the Isabelle kernel
design (proof objects, core inferences) is the Coq system (see http://coq.inria.fr).

Another notable survey on research programme is contained in the papers contained in
A Special Issue on Formal Proof distributed by the American Mathematical Society (see
http://www.ams.org/notices/200811/, but also [Hal08]), which presents nicely
the relevance of modern ITP technology for purely mathematical problems (an argument, which
has been strengthened recently by the formal proof of the Feit-Thompson theorem, whose pre-
cise formulation has haunted mathematicians for decades [Gon13], and the formal proof of the
Kepler-conjecture, which is a known mathematical problem for about 400 years).

1.7.2 Concluding Remarks and a Summary
We have presented the Isabelle/HOL system and pointed out the essential arguments, why by
a particular combination of system-architecture and methodology, the system is suited to give
the currently highest possible guarantee on a formal proof in particular and a logical theory
development in general. In a sense, Isabelle/HOL offers the same guarantees for logical systems
as Coq [Jae08], and in some sense better guarantees than, for example, the B method or model-
checkers like FDR. Isabelle/HOL is therefore a natural choice for evaluations in the higher
certification levels EAL5 to EAL7 in the Common Criteria (CC) [Mem06].

If the methodological side-conditions are respected which can be reduced essentially to
a number of syntactic checks, the formal consistency of the entire certification document
containing formal specifications, proofs of consistency and the proofs of security properties,
refinement-proofs between the different abstraction layers, and finally test-case generations as
well as test-results can be guaranteed, and the evaluator can therefore concentrate on the more
fundamental questions: does the model represent the right thing? are the modeling assumptions
justified?

As “take-home-message” we would summarize these side-conditions as follows:

1. Use a trusted, unmodified Isabelle version from the distribution.

2. Check the restriction to definitional axioms only, enforce the use of “safe” specification
constructs discussed here (Section 1.4).

3. Rule out axiomatization, sorry, their variants or disguised equivalents (such as ora-
cle declarations).

4. In particular sorry’s or equivalent constructions in methodological proofs have to be
ruled out.

5. Check the quick-and-dirty mode status.

October 2015 Page 28 of 40

http://coq.inria.fr
http://www.ams.org/notices/200811/

Used Formal Methods

6. Exploring a TOE interactively, for example by jEdit, which allows for inspecting theories
and definitions, their animation, the checking of types and of proof details, is a great
means to increase confidence for an evaluator. However, the final check should be done
in a non-interactive mode (pretty-printing and display machinery is actually quite far from
the kernel and can be erroneous in itself).

7. The main theorem in an CC evaluation is presumably of the form: “the security property
X stated in the context of the security model Y is satisfied for the functional model Z
under some conditions A in some locale B”. A skeptical evaluator may insist on proofs
that A and B are actually satisfiable, under circumstances even in a constructive sense.

8. A conservative evaluator should restrict or ban ML-statements (with the possible exception
of declarations of antiquotations), otherwise inspect ML-statements with particular care.

The internal code generator (also used in code-antiquotations and value-statements) stood
the test of the time, but enjoys not quite the same level of trust as the proof facilities. The
generation of proof objects for a complete theory is in principle possible, but should not be
necessary except in case of a concrete suspicion of a fraudulent proof attempt.

October 2015 Page 29 of 40

Used Formal Methods

Chapter 2

Style Guide

Chapter Authors (ordered according to beneficiary numbers): Sergey Tverdyshev, Oto
Havle, Holger Blasum, Bruno Langenstein, Werner Stephan, Abderrahmane Feliachi, Yakoub
Nemouchi, Burkhart Wolff, Freek Verbeek, Julien Schmaltz

2.1 Introduction
In contrast to issues related to consistency and the proper use of the HOL logic, its methodology
and the Isabelle implementation (which were pointed out in the mandatory part in Section 1),
we will present in some detail the specific pragmatics in our use of Isabelle/HOL within the
EURO-MILS project. While a description of pragmatics (or: a Style Guide) is more open-
ended and the alternatives are much less clear-cut, we will keep the focus much more on our
choices and much less on possible alternatives; this document is therefore a significantly shorter
one.

2.2 Rules

2.2.1 Basics
Rule: Follow Mandatory Guide and the AFP Style Guide Rules

The mandatory rules (captured in Section 1) concern the logical and methodological aspects of
proper use of Isabelle/HOL as a logic and a formal methods environment. The necessity of their
use is considered to be self-understood.

Additionally, we apply the so-called AFP style-guide, i.e. a set of rules imposed
by the Isabelle Archive of Formal Proofs (AFP), http://afp.sourceforge.net/
submitting.shtml, as submission guidelines. These rules can be seen as a set of best-
practice rules established by the Isabelle developer team resulting from the rich experience in
porting Isabelle theories from one Isabelle version to the next. These are in particular:

1. No use of the command back.

2. Instantiations must not use Isabelle-generated names such as xa use Isar or
rename_tac to avoid such names.

3. No use of the command smt. The result of this command depends on external tools that
are not under our control and may stop working in the future.

October 2015 Page 30 of 40

http://afp.sourceforge.net/submitting.shtml
http://afp.sourceforge.net/submitting.shtml

Used Formal Methods

4. Apply scripts should be indented by subgoal as in the Isabelle distribution. If an apply
command is applied to a state with n+1 subgoals, it must be indented by n spaces relative
to the first apply in the sequence.

5. We prefer structured Isar proofs over apply style, but do not mandate them.

6. If there are proof steps that take significant time, i.e. longer than roughly 1 min, please
add a short comment to that step, so maintainers will know what to expect.

Rule: No Obfuscation of Standard Isabelle Notation

Isabelle/HOL is a particularly flexible framework that allows on numerous levels the redefi-
nition of syntax, proof- and toplevel commands. While this may be useful in many cases, it
may also create confusion and misinterpretation by evaluators with respect to the interpretation
of terms and proofs. We adopt therefor the general rule not to override Isabelle/HOL stan-
dard library syntax as described currently in Tobias Nipkow’s Paper What’s in Main (“Main”
is the session name for Isabelle/HOL) coming with the Isabelle documentation and currently
found under http://isabelle.in.tum.de/website-Isabelle2013-2/dist/
Isabelle2013-2/doc/main.pdf for Isabelle version 2013-2. This paper contains a cat-
alogue on standard syntax for the Logic, Orderings, Lattices, Sets, Lists, etc.

For example, for constant symbols of the basic logic it defines:

• x = y, True, False, ¬ P , P ∧Q, P ∨Q, P → Q, ∀x.P , ∃x.P , ∃!x.P , THE x.P .

• undefined ::′ a

• default ::′ a

Additionally, the following syntactic abbreviations:

• x 6= y ≡ ¬(x = y)

• P ↔ Q ≡ x = y

• if x then y else z ≡ If x yz

• let x = e1 in e2 ≡ Let e1(λ x. e2)

Overloading of operators and syntactic abbreviations of the HOL-library as described in
What’s in Main should be avoided. New alternative syntactic notations may be helpful, but
should be chosen with care. Generally speaking, the non-obfuscation principle holds also for
the command and method language.

2.2.2 Modeling Style
Rule: Curried Style

Prefer the style of curried notation whenever possible; the major reason for this is that libraries
and the proof engine are geared to it (un-tupling pairs is often a show-stopper for automatic
proof derivations).

October 2015 Page 31 of 40

http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/main.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/main.pdf

Used Formal Methods

There are two major exceptions to this rule: relations and result-types of functions. Here,
the library offers conversions for both curried formats and Cartesian products, more commonly
used in mathematics.

Note that a function like f :: α → (β × γ) option → δ is already in curried form; the
Cartesian product is embedded in an option type.

Rule: Use Records

Use Records whenever possible (no “fst(fst(snd(fst(” mumbo jumbo), and attempt to structure
incremental extensions of state spaces by extensible records.

Rule: Use Locales

Locales are “Functors” on formal theories. They should be used to factor out common parts,
but also to specify high-level security concepts as in CC. However, over-generalizations should
be avoided (it is well-known that this is a difficult balance).

Locale Instantiations ARE formal proofs of consistency. Note however that this does not
necessarily mean constructivity: one can specify in HOL the Halting-Function via the Hilbert-
Choice; this does mean that the function exists, however, alas, this does not mean that it is
computable.

Some readers may have a clear leaning towards constructivism when it comes to instantiat-
ing locales. However, since Isabelle is a classical framework and we do use underspecification
for the purpose of specification conciseness, a clear-cut line to constructivity is very difficult to
establish. Inside the functor, there may be non-constructive parts, even if the instantiation itself
is constructive.

The only strong guarantee for constructivity could possibly be given if the entire functional
model is finally instantiated in a way that the code-generator can generate executable code.

Rule: Avoid Abstract Types if Possible

Abstract types (introduced by typedecl \<tau>) should be used with care and reservation;
they complicate the argument of constructivity drastically and represent an obstacle to auto-
mated test-case generation. On the other hand, using only parametric polymorphism instead
drastically complicates the signatures of key functions which may also obscure the dependen-
cies inside the model. As a consequence, the project decided to admit them at some places.

2.2.3 Formal Content
Isabelle is not just an interactive theorem proving environment. Beyond rich logical libraries as
well as infrastructure for formal definitions and semi-automated proofs, it offers support for a
particular document model comprising consistency-checking of the document’s content (called
formal content) and type-setting. A document consists of a collection of files, called session,
which can be of different file type, typically *.thy, *.ML, *.tex, and *.sty files.

Albeit a setup comprising even the *.c-sources of a larger project is in principle possible,
the file types used in the EURO-MILS project are just *.thy and *.tex, so documents written
in the Isabelle/Isar language and LaTeX. Since *.ML code can be used for obfuscation and
intransparent use of Isabelle, we avoided them, which also excludes the effective use of other
file types.

October 2015 Page 32 of 40

Used Formal Methods

We describe *.thy-files a little more in detail. Generally speaking, it consists of a header
declaring name and import relation to other files of the session, and then a sequence of (toplevel)
commands. The latter were typically introduced by a keyword such as typedef, definition, fun,
lemma, etc.

Commands can be arbitrarily interwoven with unstructured comments (text inside
(* ... *) or ... -- ... at the end of the line), for which we will adopt no particular
style-convention, and structured comments which may have the syntax:

• header <text>, chapter <text>, section <text>,
subsection <text>, subsubsection <text>, text <text>
and text_raw <text>.
These were the text commands that can be used as toplevel Isar commands in Isabelle
documents. In particular, LaTeX paragraphs can be generated by
text_raw {*\paragraph{Paragraph name}*}.

• sect <text>, subsect <text>, subsubsect <text>. These sub-
commands were used inside the Isar proof language which is used inside
lemma ... commands.

Note that <text> can have the format "..." or {* ... *}; the latter is the richer environ-
ment and therefore the preferred format.

An important aspect of formal content is the possibility to give references, i.e. links to
entities of various type, a formal status. This means that instead of “(see section 3.1)” (as text)
or “theorem ext” (as text) inside a <text> of a structured comment, it is preferable to give
these references a formal status as well which means that it can be machine checked during
document generation.

Rule: Maximize Formal Content

As a general rule, if a comment does not serve as temporary remark intended to improve the
development, it should be attempted to turn it into formal content.

Rule: Formalize External References by LaTeX Macros

References to external entities can be:

• References to entities of the CC document process, which were not necessarily part of an
Isabelle document, for example assumptions, security requirements, features, character-
istics, etc., stated inside the Target of Evaluation (TOE) document of the process.

• References to entities in the implementation, so to type declarations, variables or system
calls in the TOE implementation.

A particular type of document-internal link is also supported by a LaTeX Macro-
mechanism : References to headers, sections, subsections, figures and tables should be refer-
enced by the LaTeX hyperref package (see http://en.wikibooks.org/wiki/LaTeX/
Hyperlinks). For example, a reference for a subsection can be declared in the command:

subsection{* Foo Section \label{ssec:foo} *}

which can be referenced later inside formal text by:

text{* Later in the text, we refer to \autoref{ssec:foo} *}

October 2015 Page 33 of 40

http://en.wikibooks.org/wiki/LaTeX/Hyperlinks
http://en.wikibooks.org/wiki/LaTeX/Hyperlinks

Used Formal Methods

Rule: Formalize Document-Internal Links by Isabelle Antiquotations

With respect to formal entities such as types, terms, theorems and definitions, but also file-
names referring to files belonging to a document, etc. Isabelle offers a particular easy and
flexible mechanism to support checking of these references during the document editing process
integrated in the Isabelle IDE. It is called text-antiquotation. For the following formal entities,
there are predefined antiquotations:

• @{typ \<tau>}. Check and print type τ .

• @{const c}. Check existence of c and print it.

• @{term t}. Type-check and print term t. Example:

text {* This sentence demonstrates quotations and
antiquotations: @{term "%x y. x"} is a
well-typed term.

*}

The highlighting in the Isabelle IDE allows to identify defined constants, bound and free
variables by colour-codes.

• @{prop \<phi>}. Print and type-check proposition φ. Variants:
@{prop [display] \<phi>}: print large proposition φ (with linebreaks).
@{prop [source] \<phi>}: check proposition φ, print its input.

• @{thm a}. Print fact a. Variants: @{thm a [no_vars]}: Print fact a, fixing
schematic variables. @{thm [source] a}: Check availability of fact a, print its
name.

• @{text s}. Uninterpreted text s printed emphasized.

• @{file foo}. Print file-name foo; check its existence inside the session.

See the “The Isabelle/Isar Reference Manual” coming with the Isabelle distribution for more
details, in particular with respect to the antiquotation attributes in brackets.

A hint to the evaluator: by inserting a typ \<tau>, term t, thm n, formal entities
of these categories can be checked inside the document with respect to existence, consistency,
type-checkability, etc. If terms are defined in a constructive way, the Isabelle code-generator
can produce a value for a given term t via the value t command, which can be a great help
during inspection.

2.2.4 Layout Principles
Rule: Respect Blue Bar while Editing

Formal content text formulas and definitions should be kept under 100 char width per line —
this length is represented by a blue bar in Isabelle/jedit. Text can be arbitrarily spaced, but
exceedingly long lines produce overfull hboxes inside formula and uncontrolled layout during
LaTeX generation.

October 2015 Page 34 of 40

Used Formal Methods

Rule: Multiline Comments

Formal comments over several lines should be text{* ... *}. By convention, do not use:
--{* ... *} over several lines.

Please respect the 100 char per line rule also for inline comments.

2.3 Conclusion
Beyond the issues of logical consistency (which can be assured by a number of methodological
rules and hopefully wise self-constraints described in the mandatory part), we adopted a number
of more stylistic rules on the level of the linking between the various entities in the document
leading to, as we believe, an increase of the consistency of the semi-formal aspects of the
Isabelle documents.

October 2015 Page 35 of 40

Used Formal Methods

Chapter 3

Compliance Statement

Chapter Authors (ordered according to beneficiary numbers): Sergey Tverdyshev, Oto Havle,
Holger Blasum, Bruno Langenstein, Werner Stephan, Yakoub Nemouchi, Burkhart Wolff, Freek
Verbeek, Julien Schmaltz

In our use of Isabelle/HOL, we claim conformance to Chapter 1 and Chapter 2.

3.1 Compliance to Section 1.7.2
1. We use Isabelle2013-2, obtained from the Isabelle distribution site [PNW13].

2. We describe the safe use of the following specification constructs:

• Constants. The Isabelle consts command is not used.

• Locales. Locales establish a scope where variable assignments and assumptions
are valid. This can be used to establish general theorems without hardcoding them
to a particular theory. A locale is used to allow to develop a generic (and peer-
reviewable) theory (MCISK) that establishes separation properties for separation
kernels. Then in Theories-step/Step link MCISK.thy, conformance to the locale is
shown.

• Extensible records. We use extensible records in the representation of system state.

• Proofs. Structured Isar style is preferred. Proof automation is used whenever pos-
sible. We allow the use of sledgehammer for automatic proof search. However,
in the generated theories we do not write the command sledgehammer; instead the
output of sledgehammer is used in the proofs.

3. We never use the axiom command to insert arbitrary statements into the theories. We use
conservative constructs instead:

• Algebraic datatypes (example: phys address t).

• Subset types (example: kmem consumption f)

Absence of axiom and sorry has been checked by textual search.

4. Methodological proofs: Soundness is assured by safe use of specification constructs, see
point 2 above.

5. Absence of “quick-and-dirty” mode: Theories in [EUR15] have been compiled with
quick and dirty=false.

October 2015 Page 36 of 40

Used Formal Methods

6. We have checked theory correctness in a non-interactive mode by compiling [EUR15].

7. No statement is made that proofs are fully constructive. However, we have tried to avoid
non-constructive constructs where feasible.

8. We use antiquotations, but do not use ML statements, this can be ascertained by textual
search for ml and ML.

3.2 Compliance to Section 2
• Rule: Follow Mandatory Guide and the AFP Style Guide Rules

– (Basics 1) The command back is not used. This has been checked by textual search.

– (Basics 2) Isabelle-generated names (marked in brown color in the jEdit GUI) are
not used by the theories nor the proofs we wrote. This has been checked by visual
inspection.

– (Basics 3) The command smt is not used. This has been checked by textual search.

– (Basics 4) This rule is seen as a recommendation (“should”) and not mandatory.
No compliance is claimed. Rationale: automatic tool support is under develop-
ment [Kle15].

– (Basics 5) Structured proofs are largely used (checked by visual inspection).

– (Basics 6) There are no steps that take longer than one minute.

• Rule: No Obfuscation of Standard Isabelle Notation: We are not redefining (“overload-
ing”) any Isabelle symbol (checked by visual inspection).

• Rule: Curried Style: Curried style is used for function definitions, for example the func-
tion in port waiting in file Theories-step/Step port.thy is defined in functional style (the
definition does not take a tuple as argument, but a function).

• Rule: Use Records: Extensible records are used for definitions of state.

• Rule: Use Locales: Locales are used for MCISK.

• Rule: Avoid Abstract Types if Possible: Tuple definitions are used in a very restrained
way. At all other places, records are used.

• Rule: Maximize Formal Content: Care has been taken to convert “(* *)” to document-
visible comments “text {* *}”, where possible.

• Rule: Formalize External References by LaTeX Macros: External references to PikeOS
functions, parameters, and error codes are formalized as LaTeX macros.

• Rule: Formalize Document-Internal Links by Isabelle Antiquotations: Isabelle antiquo-
tations (“@{thm x}”) have been used.

• Rule: Respect Blue Bar while Editing: We have checked that line-breaks largely are
within 100-character “blue line” limit.

• Rule: Multiline Comments: We have used “–{* ... *}” only for one-line comments.

October 2015 Page 37 of 40

Used Formal Methods

Bibliography

[And86] Peter B. Andrews. An introduction to mathematical logic and type theory: to truth
through proof. Academic Press Professional, Inc., San Diego, CA, USA, 1986.

[And02] Peter B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Kluwer Academic Publishers, Dordrecht, 2002.

[Bal10] Clemens Ballarin. Tutorial to Locales and Locale Interpretation, 2010.

[BMSW10] Sascha Böhme, Michal Moskal, Wolfram Schulte, and Burkhart Wolff. Hol-boogie
- an interactive prover-backend for the verifying c compiler. J. Autom. Reasoning,
44(1-2):111–144, 2010.

[BW10] Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3. In
ITP, pages 179–194, 2010.

[BW13] Achim D. Brucker and Burkhart Wolff. On theorem prover-based testing. Formal
Aspects of Computing, 25(5):683–721, 2013.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, pages 56–68, June 1940.

[CKK+12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-
noles, and Boris Yakobowski. Frama-c: a software analysis perspective. In Inter-
national Conference on Software Engineering and Formal Methods (SEFM’12),
pages 233–247. Springer, October 2012.

[EUR15] EURO-MILS. Formal implementation of TOE inclusive formal proofs.
Technical Report D31.3, EURO-MILS: Secure European Virtualisa-
tion for Trustworthy Applications in Critical Domains, FP7/2007-2013,
2015. Document in PDF format https://euromils.technikon.
com/Activity-A3/WP31-Assurance-Formal-Methods/
D31-3-Implementation-Model/document.pdf, Isabelle
sources at https://euromils.technikon.com/Activity-A3/
WP31-Assurance-Formal-Methods/Theories-step/
and https://euromils.technikon.com/Activity-A3/
WP31-Assurance-Formal-Methods/Theories-trace/.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet
provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the
22nd European Symposium on Programming, volume 7792 of Lecture Notes in
Computer Science, pages 125–128. Springer, March 2013.

[GAK12] David Greenaway, June Andronick, and Gerwin Klein. Bridging the gap: Auto-
matic verified abstraction of c. In ITP, pages 99–115, 2012.

[GM93] Mike J. C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge Univer-
sity Press, 1993.

October 2015 Page 38 of 40

https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/D31-3-Implementation-Model/document.pdf
https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/D31-3-Implementation-Model/document.pdf
https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/D31-3-Implementation-Model/document.pdf
https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/Theories-step/
https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/Theories-step/
https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/Theories-trace/
https://euromils.technikon.com/Activity-A3/WP31-Assurance-Formal-Methods/Theories-trace/

Used Formal Methods

[Gon13] Georges Gonthier. Engineering mathematics: the odd order theorem proof. In
POPL, pages 1–2, 2013.

[Gor00] Mike Gordon. From LCF to HOL: a short history. In Proof, Language, and Inter-
action, pages 169–185. MIT Press, 2000.

[Hal08] Thomas C Hales. Formal proof. Notices of the AMS, 55(11):1370–1380, 2008.

[Har06] John Harrison. Towards self-verification of hol light. In IJCAR, pages 177–191,
2006.

[Int12] ISO/IEC DIS 29119: Software and Systems Engineering—Software Testing. ISO
Draft International Standard, July 2012.

[Jae08] Éric Jaeger. Remarques relatives à l’emploi des méthodes formelles (déductives)
en sécurité des systèmes d’information. 2008. 51 Boulevard de la Tour-Maubourg
75700 Paris SP 07, France.

[KAMO14] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens. HOL with
definitions: Semantics, soundness, and a verified implementation. In Interactive
Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
pages 308–324, 2014.

[KHS09] Gerwin Klein, Ralf Huuck, and Bastian Schlich. Operating system verification. J.
Autom. Reasoning, 42(2-4):123–124, 2009.

[Kle15] Gerwin Klein. Gerwin’s style guide for Isabelle/HOL. part 1: Good proofs,
2015. http://proofcraft.org/blog/isabelle-style.html, ac-
cessed 29 May 2015.

[MB08] Leonardo Moura and Nikolaj Bjorner. Z3: An efficient SMT solver. In C.R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer Berlin Heidelberg, 2008.

[Mem06] The Common Criteria Recognition Agreement Members. Com-
mon Criteria for Information Technology Security Evaluation.
http://www.commoncriteriaportal.org/, September 2006.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17(3):348 – 375, 1978.

[MOK13] Magnus O. Myreen, Scott Owens, and Ramana Kumar. Steps towards verified
implementations of hol light. In ITP, pages 490–495, 2013.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[MW79] R. Milner and C.P. Wadsworth. Edinburgh LCF: A Mechanized Logic of Compu-
tation. Lecture Notes in Computer Science. Springer, 1979.

October 2015 Page 39 of 40

http://proofcraft.org/blog/isabelle-style.html

Used Formal Methods

[NPW02] Tobias Nipkow, Larry C. Paulson, and Markus Wenzel. Isabelle/HOL—A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, 2002.

[Pau99] Lawrence C. Paulson. A generic tableau prover and its integration with isabelle.
J. UCS, 5(3):73–87, 1999.

[PNW13] Larry Paulson, Tobias Nipkow, and Makarius Wenzel. Isabelle, 2013. http://
isabelle.in.tum.de/website-Isabelle2013-2/index.html,
accessed 26 May 2015.

[PP10] Leaf Petersen and Enrico Pontelli, editors. Proceedings of the POPL 2010 Work-
shop on Declarative Aspects of Multicore Programming, DAMP 2010, Madrid,
Spain, January 19, 2010. ACM, 2010.

[TN] Markus Wenzel Tobias Nipkow, Lawrence C. Paulson. A Proof Assistant For
Higher-Order Logic.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc.
In POPL, pages 60–76, 1989.

[Wen] Makarius Wenzel. The Isabelle/Isar Reference Manual.

[Wen97] Markus Wenzel. Type classes and overloading in higher-order logic. In TPHOLs,
pages 307–322, 1997.

[Wen02] Markus M Wenzel. Isabelle/Isar—a versatile environment for human-readable
formal proof documents. PhD thesis, Technische Universität München, Univer-
sitätsbibliothek, 2002.

[Wie06] Freek Wiedijk. The Seventeen Provers of the World: Foreword by Dana S. Scott
(Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

October 2015 Page 40 of 40

http://isabelle.in.tum.de/website-Isabelle2013-2/index.html
http://isabelle.in.tum.de/website-Isabelle2013-2/index.html

Table of Content

Secure European virtualisation for trustworthy applications in critical domains. The
mission of the EURO-MILS project is to develop a solution for virtualization of
heterogeneous resources and provide strong guarantee for isolation of resources by
means of Common Criteria certification with usage of formal methods.

www.euromils.eu

for further information please contact the coordinator

TECHNIKON Forschungs- und Planungsgesellschaft mbH

coordination@euromils.eu

	EURO-MILS-D31-2-Used-Formal-Methods-PU-M32.pdf
	EURO-MILS-D31-2-Used-Formal-Methods-PU-M32.pdf
	Using Isabelle/HOL in Certification Processes: A System Description and Mandatory Recommendations
	Introduction
	Common Criteria: Normative Context
	Certification Level: Different Use of Formal Methods
	Requirements Addressed by Formal or Semiformal Models
	Formal Methods: Other Requirements Impacted

	Isabelle/HOL: Architecture, Language and Methodology
	The Isabelle System Architecture
	Isabelle and its Meta-Logic
	Foundations of HOL and its Specification Constructs
	Isabelle Proofs
	Isabelle/HOL System Features

	Methodological Recommendations for the Evaluator
	On the Use of SML
	Axioms and Bogus-Proofs
	On the Use of External Provers

	Extensions of Isabelle: Guidelines for the Evaluator
	Example: Isabelle/Simpl
	Example: The HOL-TestGen Test-Generation System
	By the Way: Test vs. Proof

	Recommendations for CC Certifications
	A Refinement Based Approach for CC Evaluation

	Summary
	Background References
	Concluding Remarks and a Summary

	Style Guide
	Introduction
	Rules
	Basics
	Modeling Style
	Formal Content
	Layout Principles

	Conclusion

	Compliance Statement
	Compliance to Section 1.7.2
	Compliance to Section 2

	Bibliography

