
This project has received funding from the European
Union’s Seventh Framework Programme for research,
technological development and demonstration under
grant agreement no 318353.

D31.4
Test-Generation Methods

Project number: 318353

Project acronym: EURO-MILS

Project title:
EURO-MILS: Secure European Virtualisa-
tion for Trustworthy Applications in Criti-
cal Domains

Start date of the project: 1st October, 2012

Duration: 40 months

Programme: FP7/2007-2013

Deliverable type: Report

Deliverable reference number: ICT-318353 / D31.4 / 1.0
Activity and Work package contributing
to deliverable: Activity 3 / WP31

Due date: January 2016 – M38

Actual submission date: 4th February, 2016

Responsible organisation: PSud

Editor: Burkhart Wolff, Yakoub Nemouchi

Dissemination level: PU

Revision: 1.0 (r1.0)

Abstract:
Methodology, theories, implementation
and case-study of a MBT-approach for
PikeOS.

Keywords: PikeOS, Common Criteria, Isabelle/HOL,
HOL-TestGen

D31.4 – Test-Generation Methods

Editor

Burkhart Wolff, Yakoub Nemouchi (PSud)

Contributors (ordered according to beneficiary numbers)

Abderrahmane Feliachi, Yakoub Nemouchi, Burkhart Wolff (Université Paris Sud)

Sergey Tverdyshev, Oto Havle, Holger Blasum (SYSGO AG)

Bruno Langenstein, Werner Stephan (Deutsches Forschungszentrum für künstliche Intelligenz /

DFKI GmbH)

Cyril Proch (Thales Communications & Security SA)

Freek Verbeek (Open University of The Netherlands)

Julien Schmaltz (Technische Universiteit Eindhoven)

Acknowledgment
The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement n◦ 318353.

This document has gone through the consortiums internal review process and is still subject to
the review of the European Commission. Updates to the content may be made at a later stage.

EURO-MILS D31.4 I

D31.4 – Test-Generation Methods

Executive Summary

This document consists of four parts:

• Part I gives an overview over formal automated test-generation techniques developed in the EURO-
MILS project. This contains a chapter on new methodologies as well as a chapter on implemented
techniques in HOL-TestGen.

• Part II develops the main approach of concurrent code-testing supported by HOL-TestGen, presen-
ted at an academic example called MyKeOS.

• Part III develops the main case-study on test-case generation for the IPC protocol, which is run
against a PikeOS demonstrator.

• Part IV comprises a collection of technical annexes: a) the current HOL-TestGen Reference
Manual, b) the Test Theory for the IPC protocol, c) the code for Test Execution Adapters and
d) the code for the PiKeOS demonstrator.

EUROMILS D31.4 Page 3 of 438

D31.4 – Test-Generation Methods

Contents

I Introduction and Context 8

1 Overview of the Research Activities in WP31.4 9
1.1 The process-algebraic approach to test-generation . 11

1.1.1 The Circus Testing Theory Revisited in Isabelle/HOL 11
1.1.2 Symbolic Test-generation in HOL-TestGen/Cirta 11
1.1.3 The Process-algebraic Approach: A Summary 11

1.2 The Monadic Approach to Test-generation . 12
1.2.1 Test Program Generation for a Microprocessor - a Case-Study 12

2 HOL-TestGen: Its Architecture and Methodology 13
2.1 Isabelle/HOL . 13

2.1.1 The Isabelle System Architecture . 13
2.1.2 Isabelle and its Meta-Logic . 15
2.1.3 The Logical Core of HOL. 16
2.1.4 The Conservative Extension Methodology . 16
2.1.5 Advanced Specification Constructs — Recursive Function Definitions. 17
2.1.6 Isabelle libraries . 17
2.1.7 Isabelle Proofs . 17
2.1.8 Isabelle/HOL system features . 17

2.2 HOL-TestGen . 18
2.2.1 The HOL-TESTGEN workflow and system architecture 18

2.3 The approach to test case generation and test data selection 19
2.3.1 Test cases generation with explicit test-hypothesis 21
2.3.2 Normal form computations . 22
2.3.3 Test data generation by constraint solving . 25
2.3.4 Test-adequacy and theoretical properties . 25

2.4 Summary of new HOL-TESTGEN Features developed in EURO-MILS 27

II Test-Generation for Concurrent OS Code 28

3 Theoretical and Technical Foundations: Testing Concurrent Programs 29
3.1 Introduction . 29
3.2 Monads Theory . 30

3.2.1 An Example: MyKeOS. 32
3.3 Conformance Relations Revisited . 33
3.4 Coverage Criteria for Interleaving . 34
3.5 Sequence Test Scenarios for Concurrent Programs . 35
3.6 Optimized Symbolic Execution Rules . 39
3.7 Test Drivers for Concurrent C Programs . 39

3.7.1 The adapter . 41
3.7.2 Code generation and Serialisation . 41
3.7.3 Building Test Executables . 42

EUROMILS D31.4 Page 4 of 438

D31.4 – Test-Generation Methods

3.7.4 GDB and Concurrent Code Testing . 42
3.8 Conclusions . 43

III Test-Generation for the PiKeOS IPC 44

4 Testing PikeOS API 45
4.1 Introduction . 45
4.2 PikeOS IPC Protocol . 45
4.3 PikeOS Model . 46

4.3.1 State . 46
4.3.2 Actions . 46
4.3.3 Traces, executions and input sequences . 47
4.3.4 Aborted executions . 47
4.3.5 IPC Execution Function . 49
4.3.6 System calls . 50

4.4 A Generic Shared Memory Model . 50
4.5 Testing PikeOS IPC . 55

4.5.1 Coverage Criteria for IPC . 55
4.5.2 Test Case Generation Process . 56
4.5.3 Symbolic Execution Rules . 57
4.5.4 Abstract Test Cases . 62
4.5.5 Test Data For Sequence-based Test Scenarios 64
4.5.6 Test Drivers . 65
4.5.7 Experimental Results . 66

4.6 Conclusion . 70
4.6.1 Related Work. 70
4.6.2 Conclusion and Future Work. 70

IV Annexes 71
4.7 HOL representation of PikeOS Datatypes . 103

4.7.1 kernel state . 103
4.7.2 atomic actions . 103
4.7.3 traces . 103
4.7.4 Threads . 104

4.8 A Shared-Memory-Model . 104
4.9 Shared Memory Model . 104

4.9.1 Prerequisites . 104
4.9.2 Definition of the shared-memory type . 105
4.9.3 Operations on Shared-Memory . 106
4.9.4 Sharing Relation Definition . 110
4.9.5 Properties on Sharing Relation . 110
4.9.6 Memory Domain Definition . 111
4.9.7 Properties on Memory Domain . 111
4.9.8 Sharing Relation and Memory Update . 112
4.9.9 Properties on lookup and update wrt the Sharing Relation 113
4.9.10 Symbolic Execution rules on Memory Update 114
4.9.11 Symbolic Execution Rules On Memory Transfer 120
4.9.12 Properties on Memory Transfer . 127
4.9.13 Test on Sharing and Transfer via smt ... 129
4.9.14 Adaptation For the smt Solver . 129

EUROMILS D31.4 Page 5 of 438

D31.4 – Test-Generation Methods

4.9.15 Error codes datatype . 132
4.10 HOL representation of PikeOS IPC error codes . 132
4.11 HOL representation of PikeOS threads type . 133

4.11.1 interface between thread and memory . 134
4.11.2 Relation between threads adresses and memory adresses 134
4.11.3 Updating thread list in the state . 134
4.11.4 Get thread by thread ID . 135

4.12 HOL representation of state type model for IPC . 136
4.12.1 informations on threads . 136
4.12.2 Interface between IPC state and threads . 136
4.12.3 Interface between IPC state and memory model 136

4.13 HOL representation of IPC preconditions . 137
4.13.1 IPC conditions on threads parameters . 137
4.13.2 IPC conditions on threads communication rights 138
4.13.3 IPC conditions on threads access rights . 138
4.13.4 interface between IPC Preconditions and IPC ′a stateid-scheme 139

4.14 HOL representation of PikeOS IPC atomic actions . 139
4.14.1 Types instantiation . 139
4.14.2 Atomic actions semantics . 140
4.14.3 Semantics of atomic actions with thread IDs as arguments 140
4.14.4 Semantics of atomic actions based on monads 144
4.14.5 Execution function for PikeOS IPC atomic actions with thread IDs as arguments 148
4.14.6 Predicates on atomic actions . 148
4.14.7 Lemmas and simplification rules related to atomic actions 149
4.14.8 Composition equality on same action . 152
4.14.9 Composition equality on different same actions: partial order reduction 157

4.15 HOL representation of PikeOS IPC traces . 160
4.15.1 Execution function for PikeOS IPC traces . 160
4.15.2 Trace refinement . 160
4.15.3 Execution function for actions with thread ID 160
4.15.4 IPC operations with thread ID . 164
4.15.5 IPC operations with free variables . 165
4.15.6 Pridicates on operations . 165
4.15.7 Simplification rules related to traces . 166

4.16 IPC Stepping Function and Traces . 170
4.16.1 Simplification rules related to the stepping function exec-actionid-Mon 171

4.17 Atomic Actions Reasoning . 184
4.17.1 Symbolic Execution Rules of Atomic Actions 184
4.17.2 Symbolic Execution Rules for Error Codes Field 187
4.17.3 Symbolic Execution Rules for Error Codes field on Pure-level 192
4.17.4 Symbolic Execution of Action Informations Field 195

4.18 IPC pre-conditions normalizer . 199
4.19 The Core Theory for Symbolic Execution of abortlif t 199

4.19.1 mbind and ioprog fail . 199
4.19.2 Symbolic Execution Rules on PREP stage . 205
4.19.3 Symbolic Execution rules on WAIT stage . 225
4.19.4 Symbolic Execution rules on BUF stage . 238
4.19.5 Symbolic Execution Rules on MAP stage . 252
4.19.6 Symbolic Execution Rules rules on DONE stage 265

4.20 Rewriting Rules for Symbolic Execution of Sequence Test Scheme 274
4.20.1 Symbolic Execution Rules for PREP stage . 274

EUROMILS D31.4 Page 6 of 438

D31.4 – Test-Generation Methods

4.20.2 Symbolic Execution Rules for WAIT stage . 295
4.20.3 Symbolic Execution Rules for BUF stage . 315
4.20.4 Symbolic Execution Rules for MAP stage . 335
4.20.5 Symbolic Execution Rules for DONE stage . 354

4.21 Introduction Rules for Sequence Testing Scheme . 360
4.21.1 Introduction Rules for PREP stage . 360
4.21.2 Introduction rules for WAIT stage . 361
4.21.3 Introduction rules rules for BUF stage . 362
4.21.4 Introduction rules for MAP stage . 364
4.21.5 Introduction rules for DONE stage . 364

4.22 Elimination rules for Symbolic Execution of a Test Specification 365
4.22.1 Symbolic Execution rules for PREP SEND . 365
4.22.2 Symbolic Execution rules for PREP RECV . 368
4.22.3 Symbolic Execution rules for WAIT SEND . 371
4.22.4 Symbolic Execution rules for WAIT RECV . 374
4.22.5 Symbolic Execution rules for BUF SEND . 377
4.22.6 Symbolic Execution rules for BUF RECV . 379
4.22.7 Symbolic Execution rules for MAP SEND . 380
4.22.8 Symbolic Execution rules for MAP RECV . 382
4.22.9 Symbolic Execution rules for DONE SEND . 383
4.22.10 Symbolic Execution rules for DONE SEND . 384

4.23 Rules with detailed Constraints . 385
4.23.1 Symbolic Execution rules for PREP SEND . 385
4.23.2 Symbolic Execution rules for PREP RECV . 389
4.23.3 Symbolic Execution rules for WAIT SEND . 393
4.23.4 Symbolic Execution rules for WAIT RECV . 397
4.23.5 Symbolic Execution rules for BUF SEND . 401
4.23.6 Symbolic Execution rules for BUF RECV . 403
4.23.7 Symbolic Execution rules for MAP SEND . 406
4.23.8 Symbolic Execution rules for MAP RECV . 408
4.23.9 Symbolic Execution rules for DONE SEND . 410
4.23.10 Symbolic Execution rules for DONE SEND . 412

4.24 HOL representation of PikeOS IPC system calls . 413
4.24.1 System calls with thread ID as argument . 413
4.24.2 System calls based on datatype . 414
4.24.3 Predicates on system calls . 416
4.24.4 Derivation of communication from system calls 417
4.24.5 Partial order theorem . 430
4.24.6 ipc communications derivations . 431
4.24.7 Lemmas on ipc communications . 431
4.24.8 No communications . 433

Bibliography 435

EUROMILS D31.4 Page 7 of 438

D31.4 – Test-Generation Methods

Part I

Introduction and Context

EUROMILS D31.4 Page 8 of 438

D31.4 – Test-Generation Methods

Chapter 1

Overview of the Research Activities in WP31.4

The term “Formal methods” refers to a set of mathematically based techniques and tools for specification,
analysis and verification of computer systems. They are mainly used to describe and to verify, in a
logically consistent way, some properties of these systems. The formal specification and verification
approaches rely usually on some underlying logic. The logical foundation of theorem provers makes
them a very convenient basis of any formal development, where the specification and the verification
activities can be gathered in one formal environment.
In the context of a certification following the scheme of Common Criteria EAL5-7, formal methods were
applied in particular to build descriptions of the security properties that a system considered as the target
of evaluation (TOE) should achieve. These security properties are are stated in terms of a security policy
model (SPM) as well as a formal functional model (FSP) of the TOE system. For the higher evaluation
assurance levels (EAL5-7), these models are required to be formal models, based on a formal method,
allowing these descriptions to be unambiguous and machine-checked. In particular the latter is a notable
pre-requisite in a collective modeling/proof effort for a complex system model. Beyond a rigourous
scheme of documentation, the certification schemes on higher EAL levels are reside on essentially two
verification techniques:

1. An (at the highest level) fully-formal refinement proof of the SPM by the FSP, which assures that
the security properties are actually established by the functional model, and

2. a rigourous testing techniques wrt. to the real implementation, that allows for establishing confid-
ence in the FSP and a reliable link between the model and the reality in the C-implementation.

In the context of the EURO-MILS project, it was decided from the beginning that the modeling ef-
fort from SPM to FSP would be untertaken in Isabelle/HOL[Nip12]. The idea of using a test-generation
method based on Isabelle/HOL models is therefore particularly attractive for establishing the link between
the FSP and the real implementation in C-code. CC evaluation for aspect of testing (ADV_ATE) is a tedi-
ous task especially when couverage is concerned. Currently developers usually do test coverage analysis
wihtout any tool support. So the approach presented here could make the task of evaluating test coverage
cheaper and less error prone. In recent years, HOL-TESTGEN [BW13] has been developed for testing
models presented in HOL, in particular for operations with complex data-structures, so data-types com-
prising lists, sets, trees, records, ... Tests were generated in the logical context of a background theory
and wrt. to a particularly property (called test-specification) formulated in it. At the begin of the project,
HOL-TESTGEN was mostly geared towards the generation of unit-tests and test-specifications of the
form:

pre(x)→post(x,SUT(x))

where x is arbitrary input, so possibly also containing an input state, pre and post a pre- and a post-
condition, and SUT an uninterpreted constant symbol representing the system under test. The test-
specification schema covers test scenarios where the initial state of the system is known and the result
state is returned by the SUT; it is therefore assumed to be accessible in principle. HOL-TESTGEN

provides automatic procedures for a test-generation process that works in principle as follows: first, a
procedure decomposes via data-type splitting rules and a kind of DNF-normalization the initial test-
specification into abstract test cases, i. e. clauses containing SUT(x) plus a collection of logical con-

EUROMILS D31.4 Page 9 of 438

D31.4 – Test-Generation Methods

staints on x. Second, , under the condition that these constraints are satisfiable, a constraint-solver can
produce automatically a ground instance for x, say c, and isolate post(c,SUT(c)) as concrete test. If
these constraints are unsatisfiable, the abstract test cases are infeasible, i. e. represent impossible (empty)
test-cases. Eliminating infeasible test cases as early as possible is primordial for effective test genera-
tion; it is also the key advantage over random-based testing which tends to be hopelessly inefficient if
pre-conditions are non-trivial. Finally, HOL-TESTGEN offers the possibility to convert concrete test
suites via code-generators into test drivers in a variety of target languages.
HOL-TESTGEN and its methodology is an instance of model-based testing (see [ABC+13] for a recent
survey over the evolving field, which was pioneered by M.C. Gaudel at the beginning of the 90ies[GB91,
Gau95]). However, its methodology coined “proof-based testing” distinguishes itself from main-stream
approaches by the following features:

1. rather than residing on small, decidable data-type theories in a propositional or first-order logic
setting, HOL-TESTGEN embraces higher-order logic (HOL) and favors for background theories
and test specifications abstract and concise mathematical descriptions rather than indirect problem-
encodings;

2. HOL-TESTGEN allows for instrumenting the generation processes of abstract and concrete test
cases by derived rules, i. e. rules that are short-cuts for the normalization and data selection phases
which were justified by formal proof;

3. HOL-TESTGEN leverages the possibility to “massage” of a given model into testable one; beyond
aforementioned instrumentation of the process, an initial model can be refined or restricted to a
model that is more suited for test-generation and its underlying need for a symbolic execution
process;

4. HOL-TESTGEN offers the possibility of a semantically controlled, clean integration from models
to the test driver generation.

However, at the beginning of the EURO MILS project, it was not clear how the approach could be
effectively applied to an operating system model involving

1. concurrency and communication, and

2. very heavy states and complex data-structures (involving a model on physical memory and policy
representations).

Prior work [BBW15] with HOL-TESTGEN had shown that sequence test scenarios could be treated
effectively in principle, if the background theory is geared towards efficient symbolic execution and if
the process is decently supported by automated reasoning. However, there is no direct way to generalize
the reification technique used in [BBW15] to the PikeOS model.
The research centered around the proof-based test-generation activity (the 31.4 activity in the EURO
MILS project) followed therefore two lines of research:

1. Based on prior experience, we attempted to use a “process-algebraic approach” based on the
process-algebra Circus[WC02], which models synchronization and concurrency naturally, but
which requires a certain effort in instrumentation and “massaging” of the PikeOS FSP into a Circus
representation;

2. we attempted to push the “monadic approach” underlying [BBW15], i. e. a specific form of
symbolic execution of execution sequences representing Mealy-machines, io-automata or io-lts’es
indirectly, towards more efficient deductive support for test-sequence generations includinging
synchronizations and formally proved reductions of the sequence-space.

EUROMILS D31.4 Page 10 of 438

D31.4 – Test-Generation Methods

1.1 The process-algebraic approach to test-generation

Based on prior work[FGW10, FWG12, FGW12], Abdou Feliachi and Burkhart Wolff pursued the ap-
proach further to the two publications, namely: The Circus Testing Theory revisited in Isabelle/HOL (by
Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel, and Burkhart Wolff) [FGWW13] and
the subsequent journal publication comprising a semi-industrial case-study: Symbolic Test-generation in
HOL-TestGen/Cirta (by Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff) [FGW15].
In order to give an overview on these works, we represent here their content by their abstract:

1.1.1 The Circus Testing Theory Revisited in Isabelle/HOL

Formal specifications provide strong bases for testing and bring powerful techniques and technologies.
Expressive formal specification languages combine large data domain and behavior. Thus, symbolic
methods have raised particular interest for test generation techniques. Integrating formal testing in proof
environments such as Isabelle/HOL is referred to as “theorem-prover based testing”. Theorem-prover
based testing can be adapted to a specific specification language via a representation of its formal se-
mantics, paving the way for specific support of its constructs. The main challenge of this approach is
to reduce the gap between pen-and-paper semantics and formal mechanized theories. In this paper we
consider testing based on the Circus specification language. This language integrates the notions of states
and of complex data in a Z-like fashion with communicating processes inspired from CSP. We present
a machine-checked formalization in Isabelle/HOL of this language and its testing theory. Based on this
formal representation of the semantics we revisit the original associated testing theory. We discovered
unforeseen simplifications in both definitions and symbolic computations. The approach lends itself to
the construction of a tool, that directly uses semantic definitions of the language as well as derived rules
of its testing theory, and thus provides some powerful symbolic computation machinery to seamlessly
implement them both in a technical environment.

1.1.2 Symbolic Test-generation in HOL-TestGen/Cirta

HOL-TESTGEN/CirTA is a theorem-prover based test generation environment for specifications written
in Circus, a process-algebraic specification language in the tradition of CSP. HOL-TESTGEN/CirTA is
based on a formal embedding of its semantics in Isabelle/HOL, allowing to derive rules over specifica-
tion constructs in a logically safe way. Beyond the derivation of algebraic laws and calculi for process
refinement, the originality of HOL-TESTGEN/CirTA consists in an entire derived theory for the gener-
ation of symbolic test-traces, including optimized rules for test-generation as well as rules for symbolic
execution. The deduction process is automated by Isabelle tactics, allowing to protract the state-space
explosion resulting from blind enumeration of data. The implementation of test-generation procedures
in CirTA is completed by an integrated tool chain that transforms the initial Circus specification of a sys-
tem into a set of equivalence classes (or “symbolic tests”), which were compiled to conventional JUnit
test-drivers. This paper describes the novel tool-chain based on prior theoretical work on semantics and
test-theory and attempts an evaluation via a medium-sized case study performed on a component of a
real-world safety-critical medical monitoring system written in Java. We provide experimental measure-
ments of the kill-capacity of implementation mutants.

1.1.3 The Process-algebraic Approach: A Summary

Overall, the process-algebraic approach does not seem to be adequate for various reasons. It seems to be
a double investment — on the one hand, substantial effort has to be done to develop improved automated
support on the shallow embedding of Circus, on the other hand, the distance between the PikeOS FSP
developed in the project and a test-theory developed in Circus got larger and larger throughout the project.
This became painfully visible when it was decided that system calls in the PikeOS functional model were

EUROMILS D31.4 Page 11 of 438

D31.4 – Test-Generation Methods

not only modeled by a sequence of atomic actions (which is perfectly possible in CSP-like languages such
as Circus), but that the actions of a system call can also be aborted when, for example, an access-control
violation has been detected. This leads to a somewhat non-standard notion of interleaving that gives
away the main-advantage of the process-algebraic approach.

1.2 The Monadic Approach to Test-generation

The monadic approach is based on the idea that the transition relation of the system under test can be seen
as a monad operation — be it in a state-exception monad in the case of a deterministic transition relation
or be it in a Kleisli-Monad in the case of a non-deterministic transition relation. This concept heavily
used in purely functional programming languages such as Haskell is a viable approach to model stateful
systems in state-less higher-order logics. It can be seen as a kind of abstract reformulation of classical
automata concepts, but lends itself via monad transformers to modular/aspect-oriented descriptions of
complex systems, where the theory of the transformers can be treated as an object of theoretical interest
in their own.
Although already sketched in [BW13], its theoretical exploration (reflected in substantial extensions in
the HOL-TESTGEN library) as well as its practical support in the HOL-TESTGEN system have been
greatly improved during the EURO-MILS project and were seen as major contribution to this deliverable.
There had been two major publications along this line of research, namely: Test Program Generation
for a Microprocessor - a Case-Study (by Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi,
and Burkhart Wolff) [BFNW13] and the subsequent paper: Testing the IPC Protocol for a Real-Time Op-
erating System (by Achim D. Brucker, Oto Havle, Yakoub Nemouchi and Burkhart Wolff) [BHNW15].
While the former paper addressed to the question “How to test the requirements of the hardware” un-
derlying an operation system was merely for us a fore-runner to advance the underlying technologies
(it was also done at a very early moment of the project where the SPM and FSP were still under heavy
development), the latter is right in the focus of our research activities for PikeOS. We will therefore refer
to the abstract of the former paper here and refer the reader to Part II which is basically an extended
version of the latter.

1.2.1 Test Program Generation for a Microprocessor - a Case-Study

Certifications of critical security or safety system properties are becoming increasingly important for a
wide range of products. Certifying large systems like operating systems up to Common Criteria EAL
4 is common practice today, and higher certification levels are at the brink of becoming reality. To
reach EAL 7 one has to formally verify properties on the specification as well as test the implementation
thoroughly. This includes tests of the used hardware platform underlying a proof architecture to be
certified. In this paper, we address the latter problem: we present a case study that uses a formal model of
a microprocessor and generate test programs from it. These test programs validate that a microprocessor
implements the specified instruction set correctly. We built our case study on an existing model that
was, together with an operating system, developed in Isabelle/HOL. We use HOL-TestGen, a model-
based testing environment which is an extension of Isabelle/HOL. We developed several conformance
test scenarios, where processor models were used to synthesize test programs that were run against real
hardware in the loop. Our test case generation approach directly benefits from the existing models and
formal proofs in Isabelle/HOL.

EUROMILS D31.4 Page 12 of 438

D31.4 – Test-Generation Methods

Chapter 2

HOL-TestGen: Its Architecture and Meth-
odology

In this chapter, we will describe HOL-TESTGEN and its extensions developed throughout the EURO-
MILS project. The system is open-source and the final version 1.8 of the development activities around
the system can be uploaded from the HOL-TESTGEN web-page 1.

2.1 Isabelle/HOL

2.1.1 The Isabelle System Architecture

We will describe the layers of the system architecture bottom-up one by one, following the diagram
Figure 2.1.

Multi-Core Ready SML

Virtual

Machines

(Partitions)

System Software

P2

C
o

d
e

 G
e

n
e

ra
ti

o
n

Kernel

HOL-TestGen

Packages

datatype, fun,

records…

Integrators

sledgehammer

Scala System Interface

Proof Procedures

simp, fast, blast, auto …

PIDE Framework + jEdit

Add-on

ToolsSimple

Proof obj

ATP’S

Zchaff

ATP’S
Vampire, E, Spass

Figure 2.1: The diagram shows the different layers like execution environment, kernel, tactical level and
proof-procedures, component level (providing external prover integration like Z3, specification compon-
ents, and facilities like the code generator, the Scala API to the system bridging to the JVM-World, and
the Prover-IDE (PIDE) layer allowing for asynchronous proof and document checking.

1https://www.brucker.ch/projects/hol-testgen/

EUROMILS D31.4 Page 13 of 438

D31.4 – Test-Generation Methods

The foundation of system architecture is still the Standard ML (SML,[MTM97]) programming environ-
ment; the default PolyML implementation
www.polyml.org supports nowadays multi-core hardware which is heavily used in recent versions for
parallel and asynchronous proof checking when editing Isabelle theories.
On top of this, the logical kernel is implemented which comprises type-checking, term-implementations
and the management of global contexts (keeping, among many other things, signature information and
basic logical axioms). The kernel provides the abstract data-types thm, which is essentially the triple
(Γ,Θ, φ), written Γ `Θ φ, where Γ is a list of meta-level assumptions, Θ the global context, contain-
ing, for example, the signature and core axioms of HOL and the signature of group operators, and a
conclusion φ, i. e.a formula that is established to be derivable in this context (Γ,Θ). Intuitively, a thm
of the form Γ `Θ φ is stating that the kernel certifies that φ has been derived in context Θ from the
assumptions Γ.
There are only a few operations in the kernel that can establish thm’s, and the system correctness de-
pends only on this trusted kernel. On demand, these operations can also log proof-objects that can be
checked, in principle, independently from Isabelle; in contrast to systems like Coq, proof objects do play
a less central role for proof checking which just resides on the inductive construction of thm’s by kernel
inferences shown, for example, in [PP10].
On the next layer, proof procedures were implemented - advanced tactical procedures that search for
proofs based on higher-order rewriting like simp, tableau provers such as fast, blast, or metis , and
combined procedures such as auto. Constructed proofs were always checked by the inference kernel.
The next layer provides major components — traditionally called packages — that implement the spe-
cification constructs such as type abbreviations, type definitions, etc., as discussed in subsection 2.1.4
in more details. Packages may also yield connectors to external provers (be it via the sledgehammer
interface or via the smt interface to solvers such as Z3), machinery for (semi-trusted) code-generators as
well as the Isar-engine that supports structured-declarative and imperative “apply style” proofs described
in subsection 2.1.7.
The Isar - engine [Wen02] parses specification constructs and proofs and dispatches their treatment via
the corresponding packages. Note that the Isar-Parser is configurable; therefore, the syntax for, say, a
data-type statement and its translation into a sequence of logically safe constant definitions (constituting
a “model” of the data type) can be modified and adapted, as well as the automated proofs that derive from
them the characterizing properties of a data-type (distinctness and injectivity of the constructors, as well
as induction principles) as thm’s available in the global context Θ thereafter. Specification constructs
represent the heart of the methodology behind Isabelle: new specification elements were only introduced
by “conservative” mechanisms, i. e. mechanisms that maintain the logical consistency of the theory by
construction; internally these constructs introduce declarations and axioms of a particular form. Note that
some of these specification constructions, for example type definitions, require proofs of methodological
side-conditions (like the non-emptyness of the carrier set defining a new type).
We mention the last layer mostly for completeness: Recent Isabelle versions posses also an API written
in Scala, which gives a general system interface in the JVM world and allows to hook-up Isabelle with
other JVM-based tools or front-ends like the jEdit client. This API, called the “Prover IDE” or “PIDE”
framework, provides an own infrastructure for controlling the concurrent tasks of proof checking. The
jEdit-client of this framework is meanwhile customized as default editor of formal Isabelle sessions, i. e.
the default user-interface the user has primarily access to. PIDE and its jEdit client manage collections
of theory documents containing sequences of specification constructs, proofs, but also structured text,
code, and machine-checked results of code-executions. It is natural to provide such theory documents as
part of a certification evaluation documentation.

EUROMILS D31.4 Page 14 of 438

www.polyml.org

D31.4 – Test-Generation Methods

2.1.2 Isabelle and its Meta-Logic

The Isabelle kernel natively supports minimal higher-order logic called Pure. It supports for just one lo-
gical type prop the meta-logical primitives for implication _ =⇒ _ and universal quantification

∧
x. P x.

The meta-logical primitives can be seen as the constructors of rules for various logical systems that can
be represented inside Isabelle; a conventional “rule” in a logical textbook:

A1 · · ·Am
C

(2.1)

can be directly represented via the built-in quantifiers
∧

and the built-in implication =⇒ as follows in
the Isabelle core logic Pure: ∧

x1 . . . xn . A1 =⇒ . . . =⇒ Am =⇒ C
(2.2)

. . . where the variables x1, . . . , xn are called parameters, the premises A1, . . . , Am assumptions and
C the conclusion; note that =⇒ binds to the right. Also more complex forms of rules as occurring in
natural deduction style inference systems like: [

A
]
···
B

A→ B

(2.3)

can be represented by (A =⇒ B) =⇒ A→B. Thus, the built-in logic provided by the Isabelle Kernel
is essentially a language to describe (systems of) logical rules and provides primitives to instantiate,
combine, and simplify them. Thus, Isabelle is a generic theorem prover. New object logics can be
introduced by specifying their syntax and natural deduction inference rules. Among other logics, Isabelle
supports first-order logic, Zermelo-Fraenkel set theory and the instance for Church’s higher-order logic
HOL. Moreover, Isabelle is also a generic system framework (roughly comparable with Eclipse) which
offers editing, modeling, code-generation, document generation and of course theorem proving facilities;
to the extent that some users use it just as programming environment for SML or to write papers over
checked mathematical content to generate LATEX output. Many users know only the theorem proving
language isar! for structured proofs and are more or less unaware that this is a particular configuration of
the system, that can be easily extended. Note that for all of the aforementioned specification constructs
and proofs there are specific syntactic representations in isar!.
Higher-order logic (HOL) [Chu40, And86, And02] is a classical logic based on a simple type system. It
is represented as an instance in Pure. HOL provides the usual logical connectives like _ ∧ _, _→_, ¬_
as well as the object-logical quantifiers ∀x. P x and ∃x. P x; in contrast to first-order logic, quantifiers
my range over arbitrary types, including total functions f ::α ⇒ β. HOL is centred around extensional
equality _ = _ ::α ⇒ α ⇒ bool. HOL is more expressive than first-order logic, since, e. g., induction
schemes can be expressed inside the logic. Being based on a polymorphically typed λ-calculus, hol! can
be viewed as a combination of a programming language like SML or Haskel, and a specification language
providing powerful logical quantifiers ranging over elementary and function types.
Isabelle/HOL is the session based on the embedding of HOL into Isabelle/Pure. Note The that simple-
type system as conceived by Church for HOL has been extended by Hindley/Milner style polymorphism
with type-classes similar to Haskel[WB89, Wen97].
The core of the logic is done via an axiomatization of the core concepts like equality, implication, and
the existence of an infinite set, the rest of the library is derived from this core by logically safe (“con-
servative”) extension principles which are syntactically identifiable constructions in Isabelle files. In
the following, we will briefly describe the axiomatic foundation of Isabelle/HOL and describe the most
common conservative extension principles.

EUROMILS D31.4 Page 15 of 438

D31.4 – Test-Generation Methods

2.1.3 The Logical Core of HOL.

In the entire library (so the Isabelle session "HOL" which is also referred to as "Main" in theory imports),
there are only 11 axioms in form of foundational axioms of the HOL-logic:

1. The equality symbol is axiomatized as an equality, i. e. it is reflexive, extensional, and satisfies
the Leibniz-property (equals can be replaced by equals in any context P). The Hilbert-Operator is
bound to choose the value characterized by equality:
axiomatization
where refl : t = (t::α) and

subst : s = t =⇒P s =⇒P t and
ext : (

∧
x::α. (f x ::β) = g x) =⇒

(λx. f x) = (λx. g x) and
the_eq_trivial: (THE x. x = a) = (a::’a)

2. The following axioms establish a relation between implication and rule formation, and between
implication and equality, as well as True, ∀ x. P x and False and (which are abbreviations for
((λx::bool. x)= (λx. x)), (P = (λx. True)) and (∀ P. P), respectively):
axiomatization
where impI : (P =⇒Q) =⇒P →Q and

mp : P →Q =⇒P =⇒ Q and
iff : (P→Q) →(Q→P) →(P=Q) and
True_or_False: (P=True) ∨(P=False)

3. Finally, a type ind is postulated to have an interpretation by an infinite carrier set. Instead
of the more common form to state the axiom of infinity: ∃f::ind⇒ind. injective(f)∧¬
surjective(f) , this axiom comes in two parts over two constants Zero_Rep and Suc_Rep:

axiomatization Zero_Rep :: ind and Suc_Rep :: ind ⇒ind where
Suc_Rep_inject: Suc_Rep x = Suc_Rep y =⇒x = y and
Suc_Rep_not_Zero_Rep: Suc_Rep x 6= Zero_Rep

On this basis, the type of natural numbers is constructed via an inductive definition, the integer and
rational numbers via quotient constructions, etcpp.

4. A further axiom is devoted for another form of the Hilbert-Choice operator:
axiomatization Eps :: (’a ⇒bool) ⇒’a
where someI: P x =⇒P (Eps P)

2.1.4 The Conservative Extension Methodology

An Isabelle/HOL version coming from a trusted distribution site should only have these axioms. Note
that in the "src/HOL" folder containing the system libraries, there are many example theories and sub-
sessions that actually state their own axioms; a prudent Isabelle theory evaluator should make sure that
none of these sessions were included.
Besides the logic, the instance of Isabelle called Isabelle/HOL offers support for specification constructs
mapped to conservative extensions schemes, i. e. a combination of type and constant declarations as
well as (internal) axioms of a very particular form. We will briefly describe here type abbreviations,
type definitions, constant definitions, datatype definitions, primitive recursive definitions, well-founded
recursive definitions as well-as Locale constructions. We consider this as the “methodologically safe”
core of the Isabelle/HOL system.
Using solely these conservative definition principles, the entire Isabelle/HOL library is built which
provides a logically safe language base providing a large collection of theories like sets, lists, Cartesian
products α×β and disjoint type sums α+β, multi-sets, orderings, and various arithmetic theories which
only contain rules derived from conservative definitions.

EUROMILS D31.4 Page 16 of 438

D31.4 – Test-Generation Methods

2.1.5 Advanced Specification Constructs — Recursive Function Definitions.

Finally, there is a parser for primitive and well-founded recursive function definition syntax. For example,
the sort-operation can be defined by:

fun ins :: [α :: linorder, α list]⇒ α list
where ins x [] = [x]

ins x (y#ys) = if x < y thenx#y#ys else y#(ins x ys)
(2.4)

fun sort :: (α :: linorder) list⇒ α list
where sort [] = []

sort(x#xs) = ins x (sort xs)
(2.5)

which is compiled internally to conservative constant and type definitions by Isabelle. Note that α ::
linorder requires that the type α is a member of the type class linorder. Thus, the operation sort works on
arbitrary lists of type (α :: linorder)list on which a linear ordering is defined. The internal (non-recursive)
constant definition for the operations ins and sort is quite involved and requires a termination proof with
respect to a well-founded ordering constructed by a heuristic. Nevertheless, the logical compiler will
finally derive all the equations in the statements above from these definition and makes them available
for automated simplification.

2.1.6 Isabelle libraries

Isabelle libraries are predefined theories for users. New theories can be defined using Isabelle specific-
ation contructs (i. e. constant definitions) and reasoning around those new definitions can be established
using Isabelle lemmas. In general, the predefined libraries implement a known theories like: set theory
[NPW14], a theory on natural numbers [NP00], lists [Nip13], functions . . . We have to notice that the
cited theories are included in HOL[NWP13], which is an Isabelle instantiation for higher order logic. In
this section we will focus on the theories used in the specification of our test theory and the diferent case
studies that we will introduce to the reader.

2.1.7 Isabelle Proofs

In addition to types, classes and constants definitions, Isabelle theories can be extended by proving new
lemmas and theorems. These lemmas and theorems are derived from other existing theorems in the
context of the current theory. Isabelle offers various ways to construct proofs for new theorems, we
distinguish two main categories: forward and backward proofs. In addition to Isabelle proofs, some
external proofs can be integrated – in a logically safe way – and compiled into an Isabelle proof. We
refer the interested reader to the Isabelle Reference Manual.

2.1.8 Isabelle/HOL system features

Finally, Isabelle/HOL manages a set of executable types and operators, i. e., types and operators for
which a compilation to SML, OCaml, Scala, or Haskel is possible. Setups for arithmetic types such as int
have been done allowing for different trade-offs between trust and efficiency. Moreover any datatype and
any recursive function are included in this executable set (providing that they only consist of executable
operators). Of particular interest for evaluators is the use of the Isar command:

valid sort[1, 7, 3] (2.6)

In the context of the definitions Equation 2.4, it will compile them via the code-generator to SML code,
execute it, and output:

[1, 3, 7] (2.7)

EUROMILS D31.4 Page 17 of 438

D31.4 – Test-Generation Methods

Figure 2.2: A HOL-TESTGEN session: This may be a proof state in a test theorem development, a list
of generated test data or a list of test-hypothesis. After test data generation, a test script is generated that
drives the test, resulting in a test trace

This provides an easy means to inspect constructive definitions and to get easy feedback for given test
examples for them. See the part “Code generation from Isabelle/HOL theories” by Florian Haftmann
from the Isabelle system documentation for further details..

2.2 HOL-TestGen

2.2.1 The HOL-TESTGEN workflow and system architecture

Using Isabelle as a symbolic computation environment, i. e., as a framework for implementing HOL-TESTGEN,
allows us to profit from the Isabelle infrastructure in many ways. For example, HOL-TESTGEN inher-
its from Isabelle a document-centric workflow: the user extends existing library-theories by a new test
theory modeling a specific application domain, by test specifications, by proofs for rules that support the
overall process and by test set-ups, while the system provides essentially editing and a stepwise valid-
ation/execution functionality for these documents. Overall, these documents can be seen as formal and
technically checked test plan of a program under test. Figure 2.2 shows a screenshot of HOL-TESTGEN.
Besides processing these documents interactively, the user can also process them in batch mode, e. g.,
for integrating the test data generation into an automated build process of the program under test.
The HOL-TESTGEN workflow is, conceptually, divided into five distinct phases: first, the Test Specific-

EUROMILS D31.4 Page 18 of 438

D31.4 – Test-Generation Methods

ation Phase in which die program under test is modeled and the test specification is written. Second,
the Test Case Generation Phase in which the abstract test cases are generated. Third, in the Test Data
Generation Phase (also called Test Data Selection Phase) we chose (at least) one representative, i. e., a
concrete test data that is processable by the program under test. Fourth, during the Test Execution Phase,
the implementation is run with the selected test. Finally, during the Test Result Verification Phase, the
behavior of the program under test is checked against the specification of the test case.
Recall Figure 2.1, which shows a brief overview over the system architecture supporting this workflow:
the first three phases (writing the test specification and the generation of test cases and test data) take
place in an environment based on Isabelle/hol!. Thus, the user of HOL-TESTGEN can profit from most
features (e. g., proving properties over the test specification, transforming the specification into a form
that is more suitable for the generation of test cases). After the successful generation of test data, the
user can either export a test script or a file containing the test data in an xml!-like representation. The
generated test script is an SML script that, together with a test harness provided by HOL-TESTGEN, can
be executed independently from HOL-TESTGEN using an arbitrary SML compiler.2 By exploiting the
various foreign language interfaces of the different SML compilers, this allows for an automated setup
for testing implementations in programming languages such as Java, C, SML, any language running on
the .net environment, or implementations accessible via Web service calls (e. g., based on widely-used
standards such as WSDl). Exporting the test data using an xml!-like representation allows for using the
test data together with domain-specific test drivers, e. g., for testing the compliance of network firewalls.

2.3 The approach to test case generation and test data selection

As input of the test case generation phase, the test specification, one might expect a special format
like pre (x)→ post (x) (PUT (x)). This rules out trivial instances such as 3 < PUT (x) or just
PUT (x) (meaning that PUT must evaluate to true for x). We do not impose any other restriction on
a specification other than the final test statements being executable, i. e., the result of the process can be
compiled into a test program.
Processing a test specification, our test case generation procedure (called gen_test_case_tac) can be sep-
arated into the following phases which were organized to the conceptual algorithm shown in Figure 2.3.
The phases are implemented by tactics that are largely re-configurable.

The Pre-normalizer is an initial phase where definitions of the test specification may be unfolded. Its
default is just a simplification tactic.

The Chooser selects (splitting) “redexes,” i. e., subterms in the current clause lists on which case-
splitting rules will be applied. The default are free variables of a type stemming from a datatype
definition such asαlist, if _ then _ else _ expressions as well as matching expressions case _ of[]⇒
_ | (_#_)⇒ _. The chooser also produces heuristically a ranking among these splitting redexes.

The Splitter executes case-splitting rules for the selected redexes. In the default, this includes the gen-
eration of datatype exhaustion theorems as discussed in subsubsection 2.3.1, or splitting rewrites
(see 2.1e).

The Normalizer applies the tableaux calculus (see Table 2.1) to split the list of subgoals into Horn-
clause normal form (hcnf!). Finally, by re-ordering the clauses, the calls of the program under test
are rearranged such that they occur only in the conclusion, where they must occur at least once.
These re-ordered hcnf! clauses are called to be in testing normal form (tnf!), if the conclusion is an
executable term.

2As the code generator of HOL-TESTGEN is based on the code-generator framework provided by Isabelle/hol!, we can
quite easily generate test scripts in languages such as Scala, F#, Haskell, or OCaml.

EUROMILS D31.4 Page 19 of 438

D31.4 – Test-Generation Methods

Figure 2.3: A high-level description of the algorithm: after a chooser-phase, where subterms were
marked for splitting (default: free variables in the test specification), a splitter introduces case-splits
of the clauses in a proof state (default: datatype exhaustion theorem, conditionals), while the normal-
izer brings the list of clauses into tnf! . Several solvers attempt to eliminate clauses with unsatisfiable
constraints (representing vacuous test cases), and tries to eliminate redundant (subsumed) cases. The
finalizer simplifies again the logical structure of the testing theorem by introducing explicit uniformity-
hypothesis

EUROMILS D31.4 Page 20 of 438

D31.4 – Test-Generation Methods

The Solver attempts to eliminate horn-clauses with unsatisfiable constraints. In the default, this is con-
figured as just a rewriter. A finally applied variant of the solver, which applies a more powerful
combination of Isabelle decision procedures, is applied when no more redexes have been found.
This final solving attempts also tries to eliminate redundant cases.

The Finalizer introduces for all remaining free variables the uniformity-hypothesis (cf. subsubsec-
tion 2.3.1).

The gen_test_case_tac procedure performs these steps until no more redexes were found. In the sub-
sequent sections, we discuss two key components of the overall test case generation process, namely two
test specific rule-schemata as well as the normalizer constructing the actual test cases. We will briefly
sketch the constraint solver used to find concrete instances of a test case, and conclude with a discussion
of coverage criteria.

2.3.1 Test cases generation with explicit test-hypothesis

We apply two test specific rule schema that start respectively finalize the normalization process. These
rule schema introduce certain subformula which can be seen as a testing-hypothesis or proof-obligation
and encapsulates them via a constant symbol THYP (which is semantically defined as just an identity)
from the rest of the test cases. Following the terminology of Gaudel [Gau95], we distinguish regularity
and uniformity-hypothesis. Note, however, that the explicit use of the hypothesis as proof-obligation
inside the logic, even inside the test-theorem is specific to our framework. These two kinds of hypothesis
are configured as default into our system, but alternative test-hypothesis are discussed in [BW13].

Using regularity-hypothesis in splitting

In the following, we address the problem of test case generation for universally quantified (or, equival-
ently, free variables) ranging over recursive datatypes such as lists or trees. For testing recursive data
structures, the following form of a regularity-hypothesis [Gau95] has been suggested:[

|x| < k
]

···
P x

P x

(2.8)

This rule formalizes the hypothesis: assuming that a predicate P is true for all data xwhose size (denoted
by |x|) is less than a given depth k, P is always true. The original rule can be viewed as a meta-notation:
In a rule for a concrete datatype, the premises |x| < k can be expanded to several premises enumerating
constructor terms.
Instead of this (deliberately) unsound rule, HOL-TESTGEN derives on-the-fly a special datatype exhaus-
tion theorem; its form depends on the depth d and the structure of the datatype of x. For the user-defined
value d = 3 and for the type α list, we have:

[
x = []

]
···

P (x)
∧
a.

[
x = [a]

]
···

P (x)
∧
a b.

[
x = [a, b]

]
···

P (x)
∧
a b c.

[
x = [a, b, c]

]
···

P (x) THYP
(
H
)

P (x)

(2.9)

where the explicit test-hypothesis “regularity” has the form H = (∀x. |x| < 4→P (x))→∀x. P x.

EUROMILS D31.4 Page 21 of 438

D31.4 – Test-Generation Methods

In the sequel, we will show the effect of the datatype exhaustion theorem on our running example presen-
ted in the introduction. The presentation of the testing theory, in our case the definition of the datatype
list and the recursive function definitions ins and sort Equation 2.4, is already complete. The test spe-
cification “the program under test should be a sorting algorithm” is straight-forward:

testspec test: PUT (x) = sort(x) (2.10)

The chooser will detect as redex the free variable x of type list; the splitter will apply the datatype
exhaustion theorem accordingly. The resulting proof state reads as follows:

test : PUT (x) = sort(x)
1. PUT ([]) = sort([])
2.

∧
a. PUT ([a]) = sort([a])

3.
∧
a b. PUT ([a, b]) = sort([a, b])

4.
∧
a b c. PUT ([a, b, c]) = sort([a, b, c])

5. THYP(∀x. |x| < 4→PUT (x) = sort(x))→∀x. PUT (x) = sort(x))

(2.11)

Elementary rewriting by the definitions of sort in Equation 2.4 and the normalization process described
in subsection 2.3.2 will turn our test specification into the final test-theorem.

Using uniformity-hypothesis in the finalizer

Uniformity-hypothesis have the form:

THYP(∃x1 . . . xn. P x1, . . . , xn→∀x1 . . . xn. P x1 . . . xn) (2.12)

and were used in the finalizer phase of the test-generation procedure. Semantically, this kind of hypo-
thesis expresses the following: whenever a test case is passed successfully for one data of this test case,
the program behaves correctly for all data of this test case. The derived rule in natural deduction format
expressing this kind of test theorem transformation reads as follows:

P ?x1 . . .?xn THYP(∃x1 . . . xn. P x1 . . . xn→∀x1 . . . xn. P x1 . . . xn)

∀x1 . . . xn. P x1 . . . xn
(2.13)

where the ?xi are just meta variables, i. e., place-holders for arbitrary terms. This rule can also be applied
for arbitrary formulae containing free variables since universal quantifiers may be introduced for them.
In contrast to our presentation in introductory examples, we use meta-variables and meta-implications
which can be processed by Isabelle’s deduction engine directly.

2.3.2 Normal form computations

At the heart of the test case generation, i. e., the generation of the testing theorem, lies a normal form
computation process similar to the DNF-computation pioneered by Dick and Faivre [DF93]. In contrast to
the latter, however, we chose to adopt a Horn-clause normal form (hcnf!) used in the usual Isabelle proof
states. In a classical logic like hol!, Horn-clauses like: JA1; . . . ;AnK=⇒An+1 are logically equivalent to
¬A1 ∨ · · · ∨ ¬An ∨ An+1. Therefore, the hcnf! can be viewed as a conjunctive normal form (cnf!). We
will interpret the subgoals of a proof state as test cases, and view the assumptions Ai of each subgoal as
constraints restricting the valid input of a test case.
In the following, we describe the tableaux, rewriting and testing normal form computations in more
detail. In Isabelle/hol!, the automated proof procedures for hol! formulae depend heavily on tableaux
calculi [dag96] presented as (derived) natural deduction rules. Table 2.1 presents the core tableaux
calculus of hol!. With the notable exception of the elimination rule for the universal quantifier (see 2.1c),

EUROMILS D31.4 Page 22 of 438

D31.4 – Test-Generation Methods

Table 2.1: The Standard Tableaux Calculus for hol!

P ?x

∃x. P x

∧
x. P x

∀x. P x
(a) Quantifier Introduction Rules

t = t true

P Q

P ∧Q

[¬Q]
···
P

P ∨Q

[P]
···
Q

P→Q

[P]
···

false

¬P

[P]
···
Q

[Q]
···
P

P = Q
(b) Safe Introduction Rules

∀x. P x

[P ?x]
···
R

R

∀x. P x

[∀x. P x, P ?x]
···
R

R
(c) Unsafe Elimination Rules

false

P

P ∧Q

[P,Q]
···
R

R

P ∨Q

[P]
···
R

[Q]
···
R

R

P→Q

[¬P]
···
R

[Q]
···
R

R

∃x. P x
∧
x.

[P x]
···
Q

Q

P = Q

[P,Q]
···
R

[¬P,¬Q]
···
R

R
(d) Safe Elimination Rules

P (if C then A else B) = (C→P (A)) ∧ (¬C→P (B))

P (case x of Nil⇒ F |(a#r)⇒ G a r) = (x = []→P (F)) ∧ (∃a t. x = a#t→P (G a t))
(e) (Splitting)-Rewrites

EUROMILS D31.4 Page 23 of 438

D31.4 – Test-Generation Methods

any rule application leads to a logically equivalent proof state: therefore, all rules (except ∀ elimination)
are called safe. When applied bottom up in backwards reasoning (which may introduce meta-variables
explicitly marked in Table 2.1), the technique leads in a deterministic manner to a hcnf!. Note, however,
that test cases are not necessarily minimal: there may be test cases that overlap. In practice, however,
this occurs seldom in specifications that are based on distinct constructors of data types.
Coming back to our running example sort, the proof-state shown in Equation 2.11 is transformed in the
normalization phase as follows. Rewriting the definitions of sort yields:

test : PUT (x) = sort(x)
1. PUT ([]) = []
2.

∧
a. PUT ([a]) = ins a []

3.
∧
a b. PUT ([a, b]) = ins a (ins b [])

4.
∧
a b c. PUT ([a, b, c]) = ins a (ins b (ins c []))

5. THYP(∀x. |x| < 4→PUT (x) = sort(x))→∀x. PUT (x) = sort(x))

(2.14)

and further rewrite steps unfolding ins result in:

test : PUT (x) = sort(x)
1. PUT ([]) = []
2.

∧
a. PUT ([a]) = [a]

3.
∧
a b. PUT ([a, b]) = if a ≤ b then [a, b] else [b, a]

4.
∧
a b c. PUT ([a, b, c]) = ins a (if b ≤ c then [b, c] else [c, b])

5. THYP(∀x. |x| < 4→PUT (x) = sort(x))→∀x. PUT (x) = sort(x))

(2.15)

This proof-state is in normal-form, the overall algorithm continues therefore executing the main loop
shown in Figure 2.3. The chooser picks in this iteration the conditionals in subgoals 3 and 4, while the
splitter uses the splitting rewrites together 2.1e with the safe introduction rules in 2.1b to compute the
following successor proof-state (some elementary rewriting on arithmetic is omitted here):

test : PUT (x) = sort(x)
1. PUT ([]) = []
2.

∧
a. PUT ([a]) = [a]

3.
∧
a b. Ja ≤ bK =⇒ PUT ([a, b]) = [a, b]

4.
∧
a b. Jb < aK =⇒ PUT ([a, b]) = [b, a]

6.
∧
a b c. Jb ≤ cK =⇒ PUT ([a, b, c]) = ins a [b, c]

7.
∧
a b c. Jc < bK =⇒ PUT ([a, b, c]) = ins a [c, b]

8. THYP(∀x. |x| < 4→PUT (x) = sort(x))→∀x. PUT (x) = sort(x))

(2.16)

After a few further iterations (and the finalization phase introducing the clauses representing the used
uniformity hypothesis), our algorithm will result in the test-theorem shown in Equation 2.16.
Our test specifications may contain higher-order constants and all sorts of bounded quantifiers (e. g., over
lists; their elimination is part of the rewrite rule set not discussed in detail here). Moreover, the procedure
also works for unbounded quantifiers ranging over datatypes (although in the default setup, only universal
quantifiers in positive occurrence and existential quantifier in negative occurrence will be selected in the
chooser). However, the procedure leaves quantifiers of other types (such as higher-order function types
or sets) unchanged and leaves it to suitable (user-programmed) procedures in the constraint solver.
The chooser also performs an internal bookkeeping of the variables introduced in the process; thus, a
splitting of meta-quantified variables a, b, c introduced by the datatype exhaustion theorem is avoided to
ensure termination. Finally, observe that the number of test cases that the algorithm constructs is finite,
but test cases in itself have usually infinitely many witnesses (test data). This is in sharp contrast to all
model-checking related approaches that attempt to approximate infinite datatypes early, and usual in an
ad-hoc manner.

EUROMILS D31.4 Page 24 of 438

D31.4 – Test-Generation Methods

A final normalization step brings the proof state in hcnf! into a particular variant of it. In particular, this
final transformation eliminate subgoals like:

J¬(PUT x = c); ¬(PUT x = d)K=⇒An+1 , (2.17)

and transform them into the equivalently clause:

J¬(An+1)K=⇒PUT x = c ∨ PUT x = d . (2.18)

We call this form of Horn-clauses testing normal form (tnf!), if after the normalization the conclusions
of all horn-clauses are executable. Not all specifications can be converted to tnf!. For example, if the
specification does not make a suitably strong constraint over program PUT , in particular if PUT does
not occur in the specification. In such cases, gen_test_case stops with an exception.

2.3.3 Test data generation by constraint solving

The test data generator called gen_test_data implements the test data selection phase. It extracts from a
given test theorem the constraints of each test case and starts a constraint resolution phase for the latter.
Our constraint solver consists of a chain of solvers, filtering smaller constraints from more complex ones.
The first level is represented by auto [Pau99] (an Isabelle standard tactic combining a tableaux-prover
with a rewrite engine and a linear arithmetic procedure). Remaining unsolved constraints were passed to
the second level, an own symbolic random-solver (a number of random ground instances were substituted
for the variables occurring in the constraint which is then passed auto). The next level is the compiling
random-solver quick_check [BN04] (an Isabelle standard procedure that compiles all constraints to code
and searches solutions by test-and-verify random values). Finally, we extended an integration of external
smt!-solvers available in recent versions of Isabelle, in particular as Z3[BTV09], by constructing from its
counter-models substitutions and by verifying them inside Isabelle.
The precise order of solvers and the number of repetitions is user-defined and highly reconfigurable. The
choice for the default order sketched above is entirely pragmatic—it turned out to be the fastest for the
examples we check, and actually changed over the years according to the availabilities and the increasing
power of its components.
Unresolved constraints (marked by RSF in our examples) where still represented in test data statements
and thus mark possibly inconclusive tests in the test-execution phase.
The test case generation phase can be very costly in some realistic examples; in others, it is the test data
generation which is the bottle neck. Massaging a test theorem into a form that permits the solver to
solve all constraints is tantamount for using HOL-TESTGEN effectively. This form of massage, possibly
resulting in new, hand-proven lemmas or axiomatically stated facts to be inserted into the test case gen-
eration and test data generation procedure is the activity that gives HOL-TESTGEN an interactive flavor,
but also makes the system so powerful.
In our example Equation 2.15, gen_test_data produces the 9 ground instances for the non-trivial test
cases in a fraction of a second; in this case, the work is solely done by our symbolic random-solver
procedure.

2.3.4 Test-adequacy and theoretical properties

In the following, we discuss the theoretical and practical properties, e. g., the underlying test-adequacy
criteria, of our black-box test case generation approach. Obviously, the heart of it is a decomposition of
the test specification into a normal form and the construction of test cases for each of its clauses. This is
in the tradition of [BGM91] and the work of Dick and Faivre [DF93]. Besides the conceptually minor
difference that our basic TNF is essentially a CNF, there is the major difference that we strive to solve a
smt! (smt!) problem for each clause (i. e., test case), and that each clause is also normalized with respect
to if _ then _ else _ and datatype induced case-statements.

EUROMILS D31.4 Page 25 of 438

D31.4 – Test-Generation Methods

Definition: Normal Test Specifications tnf!E/d(TS). The tnf! (tnf!) modulo a theory E of depth d from
a test specification TS has the following properties:

1. all constraintsCi,1, . . . , Ci,k do neither contain if _ then _ else _ nor datatype induced case-statements,
i. e., they are fully splitted,

2. all datatype-generated free variables in TS were splitted at least d times, i. e.. at least d times an
exhaustion rule must have been applied to this variable of its descendants,

3. the oracles have the form P1(PUT , c1, . . . , ck) ∨ · · · ∨ Pm(PUT , c1, . . . , ck), where the Pj are
closed and executable,

4. all constraints of all clauses (i. e., test cases) are satisfiable moduloE; i. e., ∃x1, . . . , xk. Ci,1(x1, . . . , xk)∧
· · · ∧ Ci,k(x1, . . . , xk) are true, and

5. all test-hypothesis are non-redundant, i. e., THYP(X) 6= true.

tnf!E is essentially a cnf! (cnf!) since existential quantifiers can be eliminated via meta-variables, and
the implications into disjunctions.
Definition: tnf!E/d-Test-adequacy for TS. A set of test cases for a test specification TS is tnf!E-
adequate, if a tnf!E/d(TS) normal form could be computed for TS and the set of test cases contains at
least one test case for each clause.
Theorem: HOL-TESTGEN approximates tnf!E/d-adequacy.
Proofsketch: For the case that we have a complete decision procedure for E, for example, for a Noeth-
erian and convergent set of rewrite rules for the entire theory used in the test specification, the proposition
follows by construction. The question arises, what happens if solvers fail (are not a decision procedure).
In these cases, there are more clauses with undetected unsatisfiable constraints, or satisfiable constraints
for which the constraint solver are unable to construct a solution. These cases are explicitly marked in
the resulting test-driver and will result in “inconclusive tests,” i. e., tests which require further human
inspection.
Theorem: HOL-TESTGEN is a correct testing procedure, i. e., if a test theorem of the form

TC[1] · · ·TC[n] H1 · · ·Hm

TS,
(2.19)

is constructed with all TC[i] in tnf!E/d(TS), then the implication TC[1]∧· · ·∧TC[n]∧H1 ∧· · ·Hm →
TS is logically valid.
Proofsketch: The entire procedure is based on the application of derived rules in hol!. (We assume
consistency of hol! and its correct implementation in Isabelle; However, if one has serious doubts into the
latter, it is perfectly possible to generate for the entire derivation of the test-theorem a proof object for
hol! and check the latter independently from Isabelle).
Theorem: HOL-TESTGEN is a complete testing procedure, i. e., TS → TC[1] ∧ · · · ∧ TC[n] ∧ H1 ∧
· · ·Hm holds.
Proofsketch: The construction of the normal form uses only the “safe” (i. e., logically equivalent) rules
of Table 2.1, plus rewrite rules for the user-defined operations.
Running our sorting example on standard hardware requires less than a second for depth d = 3 (10
cases), less than five seconds for depth d = 4 (34 cases). For depth d = 5 (154 cases) the generation
already requires around 15 minutes. At the first glance, this seems to indicate that the HOL-TESTGEN

approach does not scale well. Especially, as random testing tools like QuickCheck [CH00] promise to
check similar properties with several thousands of test cases within 15 minutes. We argue, however,
that an in-depth analysis of the situation refutes this conclusion: 1. on average, a purely random testing

EUROMILS D31.4 Page 26 of 438

D31.4 – Test-Generation Methods

approach needs to check 4 000 000 test cases3 to hit the 153 cases of the tnf!E/5, 2. in many application
scenarios of model-based testing, a small number of significant tests is crucial to make testing practically
feasible, and 3. tnf!E/5 is indeed what the sorting problem imposes, that the algorithmic structure of
the problem motivates a certain structure of the test cases. While the efficiency of QuickCheck can be
improved by manually providing specialized test case generators, our approach reveals the underlying
problem structure automatically.
Finally, the global solver also attempts to eliminate redundant test cases. Since this analysis is costly
and in general impossible—subsumption of a test case φ in a test case ψ boils down to decide ψ →
φ—we have to live with the fact that test cases are not partitions and we will have more test data in
practice than needed in a minimal set of test cases in which the classes of solutions are strictly disjoint.
Our procedure is well-behaved for medium-size examples shown throughout this paper. The effect of
generating redundant test cases can be annoying in very large examples in our experience.

2.4 Summary of new HOL-TESTGEN Features developed in EURO-MILS

From the version 1.6.0, which was publicly released prior to the EURO-MILS project, to the currently
released version 1.8.0 (pre), there are a number of improvements:

1. The Bug-Tracking system of the HOL-TESTGEN project reports 6 closed bugs, most notable
related to performance issues and not sufficient splitting for variables with nested or mutually
recursive data-types. (It introduced 2 new performance bugs though.)

2. New command option syntax for configuration settings in Isar.

3. New naming conventions for concrete and abstract test theorems.

4. Substantially extended library: the Monad-theory grew by 2000 loc’s together with machinery to
generate for Extended-Finite-State-Machine setups for the splitting machinery.

5. Re-organization of the example suite: separation into unit, sequence and reactive sequence test-
examples. New reference examples Bank and MyKeOS for sequence testing.

3For lists of length n, we generate n! test cases (every permutation). A purely random testing-bases approach that generates
lists of length n for integers up to k needs to generate

(
k
n

)
test cases for ensuring the inclusion of all n! permutations.

EUROMILS D31.4 Page 27 of 438

D31.4 – Test-Generation Methods

Part II

Test-Generation for Concurrent OS Code

EUROMILS D31.4 Page 28 of 438

D31.4 – Test-Generation Methods

Chapter 3

Theoretical and Technical Foundations: Test-
ing Concurrent Programs

3.1 Introduction

The verification of systems combining soft- and hardware, such as modern avionics systems, asks for
combined efforts in test and proof: In the context of certifications such as EAL5 in Common Criteria, the
required formal security models have to be linked to system models via refinement proofs, and system
models to code-level implementations via testing techniques. Tests are required for methodological
reasons (“Did we get the system model right? Did we adequately model the system environment?”) as
well as economical reasons (state of the art deductive verification techniques of machine-level code are
practically limited to systems with ca. 10 kLOC of size, see [KEH+09]).
Our work stands in the context of an EAL5+ certification project 1 of the commercial OS-concurrent
operating system called PikeOS, used in avionics applications; PikeOS [SYS, SYS13a, SYS13b] is a
virtualizing separation kernel in the tradition of L4-microkernels [HHL+97]. Our work complements the
testing initiative by a model-based testing technique linking the formal system model of the PikeOS inter-
process communication against the real system. This is a technical challenge for at least the following
reasons:

• the system model is a transaction machine over a very rich state,

• system calls were implemented by internal, uninterruptible “atomic actions” reflecting the L4-
microkernel concept; atomic actions define the granularity of our concurrency model, and

• the security model is complex and, in case of aborted system calls, leads to non-standard notions
of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical foundations.

• We use symbolic execution techniques to cope with the large state-space; their inherent drawback
to be limited to relatively short execution traces is outweighed by their expressive power,

• we extend the “monadic test approach” proposed in [BW07, BW13] to a test-method for concurrent
code. It combines an IO-automata view [LT89] with extended finite state machines [Gil62] using
abstract transitions, and

• we need an adaption of concurrency notions, a “semantic view” on partial-order reduction and its
integration into interleaving-based coverage criteria.

This sums up to a novel, tool-supported, integrated test methodology for concurrent OS-system code,
ranging from an abstract system model in Isabelle/HOL, complemented embedding of the latter into
our monadic sequence testing framework, our setups for symbolic execution down to generation of test-
drivers and the code instrumentation.

1www.euromils.eu

EUROMILS D31.4 Page 29 of 438

D31.4 – Test-Generation Methods

In this chapter we will introduce a set of technical and theoretical contributions to test concurrent pro-
grams. On theoretical side, we present the monadic test approach from an IO-Automata view in sec-
tion 3.2 then we show how it can be used to express concurrent test scenarios in section 3.4. In section 3.3
we state our refinement relation, which help us to express a familly of conformance relations to link the
abstract model with the concrete implementation. On the technical side, we will show how Isabelle is
used as an abstract test case generator in section 3.5. Finally, our techniques to build test drivers for
concurrent code are presented in section 3.7.

3.2 Monads Theory

The obvious way to model the state transition relation of an automaton A is by a relation of the type
(σ × (ι× o)× σ) set; isomorphically, one can also model it via:

ι⇒ (σ ⇒ (o× σ) set)

or for a case of a deterministic transition function:

ι⇒ (σ ⇒ (o× σ) option)

In a theoretic framework based on classical higher-order logic (HOL), the distinction between “determ-
inistic” and “non-deterministic” is actually much more subtle than one might think: since the transition
function can be underspecified via the Hilbert-choice operator, a transition function can be represented
by

step ι σ = {(o, σ′)|post(σ, o, σ′)}
or:

step ι σ = Some(SOME(o, σ′). post(σ, o, σ′))

for some post-condition post. While in the former “truly non-deterministic” case step can and will at
run-time choose different results, the latter “underspecified deterministic” version will decide in a given
model (so to speak: the implementation) always the same way: a choice that is, however, unknown
at specification level and only declaratively described via post. For the system in this paper and our
prior work on a processor model [BFNW13], it was possible to opt for an underspecified deterministic
stepping function.
We abbreviate functions of type σ ⇒ (o×σ) set or σ ⇒ (o×σ) option MONSBE(o, σ) or MONSE(o, σ),
respectively; thus, the aforementioned state transition functions of io-automata can be typed by ι →
MONSBE(o, σ) for the general and ι → MONSE(o, σ) for the deterministic setting. If these function
spaces were extended by the two operations bind and unit satisfying three algebraic properties, they form
the algebraic structure of a monad that is well known to functional programmers as well as category
theorists. Popularized by [Wad92], monads became a kind of standard means to incorporate stateful
computations into a purely functional world.
Since we have an underspecified deterministic stepping function in our system model, we will concen-
trate on the latter monad which is called the state-exception monad in the literature.
The operations bind, which represent sequential composition with value passing, and unit, which repres-
ent the embedding of a value into a computation, are defined for the special-case of the state-exception
monad as follows:

definition bindSE :: (’o,’σ)MON_SE ⇒(’o ⇒(’o’,’σ)MON_SE) ⇒
(’o’,’σ)MON_SE

where bindSE f g = (λσ. case f σof None ⇒None
| Some (out, σ’) ⇒g out σ’)

definition unitSE :: ’o ⇒(’o, ’σ)MON_SE ((return _) 8)
where unitSE e = (λσ. Some(e,σ))

EUROMILS D31.4 Page 30 of 438

D31.4 – Test-Generation Methods

We will write x ← m1; m2 for the sequential composition of two (monad) computations m1 and m2

expressed by bindSEm1(λx.m2). Moreover, we will write “return” for unitSE.
This definition of bindSE and unitSE satisfy the required monad laws:

lemma bind_left_unit_SB : (x := returns a; m x) = m a
by (rule ext,simp add: unit_SB_def bind_SB_def)

lemma bind_right_unit_SB: (x := m; returns x) = m
by (rule ext, simp add: unit_SB_def bind_SB_def)

lemma bind_assoc_SB: (y := (x := m; k x); h y) =
(x := m; (y := k x; h y))

by (rule ext, simp add: unit_SB_def bind_SB_def split_def)

On this basis, the concept of a valid monad execution, written σ |= m, can be expressed: an execution of
a Boolean (monad) computation m of type (bool, σ) MONSE is valid iff its execution is performed from
the initial state σ, no exception occurs and the result of the computation is true.

definition validSE ::
’σ ⇒ (bool,’σ) MONSE ⇒bool (infix |=15)
where (σ |=m) = (m σ 6= None ∧fst(the (m σ)))

More formally, σ |= m holds iff (m σ 6= None∧ fst(the(m σ))), where fst and snd are the usual first
and second projection into a Cartesian product and the is the projection in the Some a variant of the
option type.
We define a valid test-sequence as a valid monad execution of a particular format: it consists of a series
of monad computations m1 . . .mn applied to inputs ι1 . . . ιn and a post-condition P wrapped in a return
depending on observed output. It is formally defined as follows:

σ |= o1 ← m1 ι1; . . . ; on ← mn ιn; return(P o1 · · · on)

The notion of a valid test-sequence has two facets: On the one hand, it is executable, i. e., a program,
iff m1, . . . ,mn, P are. Thus, a code-generator can map a valid test-sequence statement to code, where
the mi where mapped to operations of the SUT interface. On the other hand, valid test-sequences can be
treated by a particular simple family of symbolic executions calculi, characterized by the schema (for all
monadic operations m of a system, which can be seen as its step-functions):

(σ |= returnP) = P (3.1a)

Cm ι σ m ι σ = None

(σ |= ((s← m ι;m′ s))) = False
(3.1b)

Cm ι σ m ι σ = Some(b, σ′)

(σ |= s← m ι;m′ s) = (σ′ |= m′ b)
(3.1c)

Which corresponds to the following Isabelle/HOL implementation:

lemma exec_unitSE [simp]: (σ |=(return P)) = (P)
by(auto simp: validSE_def unitSE_def)

lemma exec_bindSE_failure:
A σ = None =⇒¬(σ |=((s ←A ; M s)))
by(simp add: validSE_def unitSE_def bindSE_def)

EUROMILS D31.4 Page 31 of 438

D31.4 – Test-Generation Methods

lemma exec_bindSE_success:
A σ = Some(b,σ’) =⇒(σ |=((s ←A ; M s))) = (σ’ |=(M b))
by(simp add: validSE_def unitSE_def bindSE_def)

This kind of rules is usually specialized for concrete operations m; if they contain pre-conditions Cm
(constraints on ι and state), this calculus will just accumulate those and construct a constraint system to
be treated by constraint solvers used to generate concrete input data in a test.

3.2.1 An Example: MyKeOS.

To present the effect of the symbolic rules during symbolic execution, we present a toy OS-model.
MyKeOS provides only three atomic actions for allocation and release of a resource (for example a
descriptor of a communication channel or a file-descriptor). A status operation returns the number of
allocated resources. All operations are assigned to a thread (designated by thread_id) belonging to
a task (designated by task_id, a Unix/POSIX-like process); each thread has a thread-local counter in
which it stores the number (the status) of the allocated resources. The input is modeled by the data-type:

datatype in_c = alloc task_id thread_id nat
| release task_id thread_id nat
| status task_id thread_id

datatype out_c = alloc_ok | release_ok | status_ok nat

where out_c captures the return-values. Since alloc and release do not have a return value, they
signalize just the successful termination of their corresponding system steps. The global table var_tab
(corresponding to our symbolic state σ) of thread-local variables is modeled as partial map assigning to
each active thread (characterized by the pair of task and thread id) the current status:

type_synonym thread_local_var_tab = (task_id ×thread_id) ⇀int

The operation have the precondition that the pair of task and thread id is actually defined and, moreover,
that resources can only be released that have been allocated; the initial status of each defined thread is
set to 0. The hol! representation of the preconditions and postconditions is:

fun precond :: thread_local_var_tab ⇒in_c ⇒bool
where
precond σ(alloc c no m) = ((c,no) ∈dom σ)
| precond σ(release c no m) = ((c,no) ∈dom σ∧

(int m) ≤the(σ(c,no)))
| precond σ(status c no) = ((c,no) ∈dom σ)

fun postcond :: in_c ⇒thread_local_var_tab ⇒
(out_c ×thread_local_var_tab) set

where
postcond (alloc c no m) σ=

{ (n,σ’). (n = alloc_ok ∧
σ ’=σ((c,no) 7→ the(σ(c,no)) + int m))}

| postcond (release c no m) σ=
{(n,σ’). (n = release_ok ∧

σ ’=σ((c,no) 7→ the(σ(c,no)) - int m))}
| postcond (status c no) σ=

{(n,σ’). (σ=σ’ ∧
(∃ x. status_ok x = n ∧x = nat(the(σ(c,no)))))}

Depicted as an extended finite state-machine (EFSM), the operations of our system model SPEC are
specified as shown in Figure 3.1.
A transcription of an EFSM to HOL is reprented by a locale (see section 3.5), which is instantiated by
the above definitions of pre-post conditions and:

EUROMILS D31.4 Page 32 of 438

D31.4 – Test-Generation Methods

event : alloc(tid,thid,m)
guard : (tid,thid) dom(var_tab) �
send : alloc_ok !
action : var_tab[tid,thid]+=m

event : status(tid,thid)
guard : (tid,thid) dom(var_tab) �
send : status(n)!
action : n=var_tab[tid,thid]

event : release(tid,thid,m)
guard : (tid,thid) dom(var_tab) �
 ⋀ var_tab[tid,thid]>m
send : release_ok!
action : var_tab[tid,thid]-=m var_tab

Figure 3.1: SPEC: An Extended Finite State Machine for MyKeOS.

definition strong_impl ::
[’σ⇒’ι⇒bool, ’ι⇒(’o,’σ)MON_SB] ⇒’ι⇒(’o, ’σ)MONSE
where strong_impl pre post ι=

(λ σ. if pre σι
then Some(SOME(out,σ’). (out,σ’) ∈post ισ)
else None)

definition SPEC = (strong_impl precond postcond)

where SPEC represent the instantiation of an EFSM with the semantics of MyKeOS. We show a concrete
symbolic execution rule derived from the definitions of the SPEC system transition function, e. g., the
instance for Equation 4.1:

(tid , thid) ∈ dom(σ) SPEC (alloc tid thid m) σ = Some(alloc_ok, σ′)

(σ |= s← SPEC (alloc tid thid m);m′ s) = (σ′ |= m′ alloc_ok)

where σ = var_tab and σ′ = σ((tid , thid) := (σ(tid , thid)+m)). Thus, this rule allows for computing
σ, σ′ in terms of the free variables var_tab, tid , thid and m. The rules for release and status are
similar. For this rule, SPEC (alloc tid thid m) is the concrete stepping function for the input event
alloc tid thid m, and the corresponding constraint CSPEC of this transition is (tid , thid) ∈ dom(σ).

3.3 Conformance Relations Revisited

We state a family of test conformance relations that link the specification and abstract test drivers. The
trick is done by a coupling variable res that transport the result of the symbolic execution of the specific-
ation SPEC to the expected result of the SUT.

σ |= o1 ← SPEC ι1; . . . ; on ← SPEC ιn; return(res = [o1 · · · on])

−→
σ |= o1 ← SUT ι1; . . . ; on ← SUT ιn; return(res = [o1 · · · on])

Successive applications of symbolic execution rules allow to reduce the premise of this implication to
CSPEC ι1 σ1 −→ . . . −→ CSPEC ιn σn −→ res = [a1 · · · an] (where the ai are concrete terms
instantiating the bound output variables oi), i. e., the constrained equation res = [a1 · · · an]. The latter
is substituted into the conclusion of the implication. In our previous example, case-splitting over input-
variables ι1, ι2 and ι3 yields (among other instances) ι1 = alloc t1 th1 m, ι2 = release t2 th2 n and
ι3 = status t3 th3, which allows us to derive automatically the constraint:

(t1, th1) ∈ dom(σ) −→
(t2, th2) ∈ dom(σ′) ∧ n < σ′(t2, th2) −→

(t3, th3) ∈ dom(σ′′) −→ res = [alloc_ok, release_ok, status_ok(σ′′(t3, th3)]

EUROMILS D31.4 Page 33 of 438

D31.4 – Test-Generation Methods

where σ′ = σ((t1, th1) := (σ(t1, th1) +m))) and σ′′ = σ′((t2, th2) := (σ(t2, th2)− n))). In general,
the constraint CSPECi ιi σi can be seen as an symbolic abstract test execution; instances of it (produced
by a constraint solver such as Z3 integrated into Isabelle) will provide concrete input data for the valid
test-sequence statement over SUT, which can therefore be compiled to test driver code. In our example
here, the witness t1 = t2 = t3 = 0, th1 = th2 = th3 = 5, m = 4 and n = 2 satisfies the constraint
and would produce (predict) the output sequence res = [alloc_ok, release_ok, status_ok 2] for SUT
according to SUT. Thus, a resulting (abstract) test-driver is:

σ |= o1 ← SUT ι1; . . . ; o3 ← SUT ι3;

return([alloc_ok, release_ok, status_ok 2] = [o1 · · · o3])

This schema of a test-driver synthesis can be refined and optimized. First, for iterations of stepping
functions an ’mbind’ operator can be defined, which is basically a fold over bindSE. It takes a list of
inputs ιs = [i1, . . . , in], feeds it subsequently into SPEC and stops when an error occurs. Using mbind,
valid test sequences for a stepping-function (be it from the specification SPEC or the SUT) evaluating
an input sequence ιs and satisfying a post-condition P can be reformulated to:

σ |= os← mbind ιs SPEC; return(P os)

Second, we can now formally define the concept of a test-conformance notion:

(SPEC v〈Init,CovCrit,conf〉 SUT) =

(∀σ0 ∈ Init . ∀ι s ∈ CovCrit . ∀res.
σ0 |= os ← mbind ιs SPEC; return(conf ιs os res)

−→ σ0 |= (os ← mbind ιs SUT ; return(conf ιs os res)))

For example, if we instantiate the conformance predicate conf by:

conf ιs os res = (length(ιs) = length(os) ∧ res = os)

we have a precise characterization of inclusion conformance : We constrain the tests to those test se-
quences where no exception occurs in the symbolic execution of the model. Symbolic execution fixes
possible output-sequence (which must be as long as the input sequence since no exception occurs) in
possible symbolic runs with possible inputs, which must be exactly observed in the run of the SUT in
the resulting abstract test-driver.
Using pre-and postcondition predicates, it is straight-forward to characterize deadlock conformance or
IOCO mentioned earlier (recall that our framework assumes synchronous communication between tester
and SUT; so this holds only for a IOCO-version without quiescence). Further, we can characterize a set
of initial states or express constraints on the set of input-sequences by the coverage criteria CovCrit ,
which we will discuss in the sequel.

3.4 Coverage Criteria for Interleaving

In the following, we consider input sequences ιs which were built as interleaving of one or more inputs
for different processes; for the sake of simplicity, we will assume that it is always possible to extract
from an input event the thread and task id it belongs to. It is possible to represent this interleaving, for
example, by the following definition:

fun interleave :: ’a list ⇒’a list ⇒’a list set
where interleave [] [] = {[]}

|interleave A [] = {A}
|interleave [] B = {B}
|interleave (a # A) (b # B) =

(λx. a # x) ‘interleave A (b # B) ∪
(λx. b # x) ‘interleave (a # A) B

EUROMILS D31.4 Page 34 of 438

D31.4 – Test-Generation Methods

and by requiring for the input sequence ιs to belong to the set of interleavings of two processes P1 and
P2: ιs ∈interleave P1 P2. It is well known that the combinatorial explosion of the interleaving
space represents fundamental problem of concurrent program verification. Testing, understood as the
art of creating finite, well-chosen subspaces for large input-output spaces, offers solutions based on
adapted coverage criteria [SLZ07] of these spaces, which refers to particular instances of CovCrit
in the previous section. A well-defined coverage criterion [ZHM97, FTW04] can reduce a large set
of interleavings to a smaller and manageable one. For example, consider the executions of the two
threads in MyKeOS: T = [alloc 3 1 2, release 3 1 1, status 3 1] and T’ = [alloc

2 5 3, release 3 1 1, status 2 5]. Since our simplistic MyKeOS has no shared memory, we
simulate the effect by allowing T’ to execute a release-action on the local memory of task 3, thread 1
by using its identity. In general, we are interested in all possible values of a shared program variable x at
position l after the execution of a process P . To this end we will define two sets of interleavings under
two different known criteria.

• Criterion1: standard interleaving (SIN) the interleaving space of actions sequences gets a com-
plete coverage iff all possible interleavings of the actions of P are covered.

• Criterion2: state variable interleaving (SVI) the interleaving space of actions sequences gets a
complete coverage iff all possible states of x at l in P are covered.

Under SIN we derive 10 possible actions sequences, which is reduced under SVI to 3 sequences (where
one leads to a crash; recall our assumption that the memory is initially 0). Unlike to SIN, SVI has
provided a smaller interleaving set that cover all possible states. If we consider var_tab[3,1] for x
when executing status 3 1, the possible results may be undefined, O or 1. While SIN has provided a
bigger set, that cover all possible 3 states of x with redundant sequences representing the same value. In
model-checking, this reduction technique is also known as partial order reduction [Pel93, GW94]. It is
a part of a beauty for our test and proof approach, that we can actually formally prove that the test-sets
resulting from the test-refinements:

SPEC v〈Init,SIN,conf〉 SUT and SPEC v〈Init,SV N,conf〉 SUT

are equivalent for a given SPEC. The core of such an equivalence proof is, of course, a proof of com-
mutativity of certain step executions, so properties of the form:

o← SPEC ιi; o
′ ← SPEC ιj ;M o o′ = o′ ← SPEC ιj ; o← SPEC ιi;M o o′,

which are typically resulting from the fact that these executions depend on disjoint parts of the state.
In MyKeOS, for example, such a property can be proven automatically for all ιi = release t th and
ιj = release t′ th ′ with t 6= t′ ∨ th 6= th′; such reordering theorems justify a partial order on inputs
to reduce the test-space. We are implicitly applying the testability hypothesis that SUT is input-output
deterministic; if a input-output sequence is possible in SPEC, the assumed input-output determinism
gives us that repeating the test by an equivalent one will produce the same result.

3.5 Sequence Test Scenarios for Concurrent Programs

HOL-TESTGEN is a test-generation system based on the Isabelle theorem prover. The main goal of
this system is to use the features of Isabelle in order to generate a test set. Using the isar command
test_spec from HOL-TESTGEN framework a test scenario can be represented in form of a test spe-
cification. A test specification is an hol! formula, i. e. a valid test sequence, that describe the test set to
be generated. Two possible schemes for a test scenario can be expressed by a test specification: unit test
scheme, sequence test scheme. In this section we will focus on sequence test scenarios. In sequence test
scenarios, a set of input sequences are generated under a given coverage criteria and symbolically ex-
ecuted (see section 3.6 for more details on our symbolic execution process). Actually, a test specification
is a lemma which contains our refinement relation (see section 3.3) as a proof statement. The representa-
tion of a refinement relation, for a scenario related to MyKeOS system, using Isabelle/isar language can
be:

EUROMILS D31.4 Page 35 of 438

D31.4 – Test-Generation Methods

test_spec test_status:
assumes account_defined: (tid,0) ∈dom σ0∧(tid,1) ∈dom σ0

and CovCrit : S ∈interleave (syscall tid 0 m m’)
(syscall tid 1 m’’ m’’’)

and SPEC :
σ 0 |=(s ←mbind S SPEC; return (x = s))

shows σ 0 |=(s ←mbind S PUT; return (s = x))

In the scenario test_status the assumption account_defined is used to bound the set of threads
in the system to 2 members. The assumption CovCrit represent the set of possible input sequences
related to the concurrent execution between syscall tid 0 m m’ and syscall tid 1 m’’ m’’’.
Moreover, SPEC represent the model of the behaviour of the SUT. Finally, the conclusion σ 0 |=(s ←
mbind S PUT; return (s = x)) is used to link the model with the real system via the free variable
PUT. Actually, the free variable PUT will be linked to the actual code of SUT during the execution of the
test script (for more details linkage between a model and a SUT see section 3.7).
In fact, the representation of test_status by a lemma offers a way to use the symbolic computation
engine of Isabelle, usually used for proofs, as a simulation environment for the behaviour of the SUT.
Basically, the simulation is done via the application of symbolic execution rules, e. g. an instance for
Equation 4.1, on the proof statement, which result with a set of subgoals. Each subgoal represent an
abstract test case, and each abstract test case is a representation of a set of possible executions in the
SUT. Moreover, during the simulation of the behavior of the SUT, and depending on the generated
constraints, other kind of rules called behavioral refinement rules can be applied to optimize the process
of symbolic execution:

lemma mbindFSave_vs_mbindFStop :
(σ |=(os ←(mbind’ ιs SPEC);

return(length ιs = length os ∧P ιs os))) =
(σ |=(os ←(mbind ιs SPEC); return(P ιs os)))
proof -
(...)

This rule express the fact that we can reduce the behavior of SPEC modeled by mbind executions to a
behavior of SPEC modeled by mbind’ executions under the constraint length ιs = length os ∧
P ιs os. The difference between the two type of executions is:

• With mbind’ the execution of a given input sequence ιs by the operational semantic SPEC will
fail, i. e. returns None, if the execution of one input ι in ιs fails.

• On the other hand, the execution of a given input sequence ιs by mbind will never fail, i. e. it
returns always Some(os, σ); if the execution of one input ι in ιs fail, mbind stop the execution
of the sequence, purge the failed input and saves the previous outputs resulting from the execution
of the previous inputs.

The difference between executions under mbind’ and mbind can be observed more clearly in their hol!
specifications:

fun mbind :: ’ι list ⇒(’ι ⇒(’o,’σ) MONSE) ⇒(’o list,’σ) MONSE
where mbind [] iostep σ= Some([], σ) |

mbind (a#H) iostep σ=
(case iostep a σof

None ⇒ Some([], σ) (* Return Some *)

EUROMILS D31.4 Page 36 of 438

D31.4 – Test-Generation Methods

| Some (out, σ’) ⇒
(case mbind H iostep σ’ of

None ⇒ Some([out],σ’) (* Return Some *)
| Some(outs,σ’’) ⇒Some(out#outs,σ’’)))

fun mbind’ :: ’ι list ⇒(’ι ⇒(’o,’σ) MONSE) ⇒(’o list,’σ) MONSE
where mbind’ [] iostep σ= Some([], σ) |

mbind’ (a#S) iostep σ=
(case iostep a σof

None ⇒ None (* fail-strict *)
| Some (out, σ’) ⇒

(case mbind’ S iostep σ’ of
None ⇒ None (* fail-strict *)

| Some(outs,σ’’) ⇒Some(out#outs,σ’’)))

The simulation, related to the behavior of MyKeOS specified in the scenario test_status, using sym-
bolic execution on Isabelle, is represented by the following:

EUROMILS D31.4 Page 37 of 438

D31.4 – Test-Generation Methods

(...)
(**************************************
Resulting proof statement: ctxt1
**************************************)
1. σ0 |=(s ←mbind [alloc tid 1 m’’, release tid 0 m’,

release tid 1 m’’’, status tid 1]
SYS; unitSE (x = s)) =⇒

σ 0 |=(s ←mbind S PUT; unitSE (s = x))

(****************************
rules applied on: ctxt1
****************************)
apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E},

@{thm release.exec_mbindFStop_E},
@{thm alloc.exec_mbindFStop_E},
@{thm H1}] 1)

(**************************************
Resulting proof statement: ctxt2
**************************************)
1.(tid, 1) ∈dom σ0=⇒
σ 0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’) |=
(s ←mbind [release tid 0 m’, release tid 1 m’’’, status tid 1]

SYS ; unitSE (x = alloc_ok # s)) =⇒
σ 0 |=(s ←mbind S PUT; unitSE (s = x))

(****************************
rules applied on: ctxt2
****************************)
apply(tactic ematch_tac [@{thm status.exec_mbindFStop_E},

@{thm release.exec_mbindFStop_E},
@{thm alloc.exec_mbindFStop_E},
@{thm H1}] 1)

(*************************************
Resulting proof statement: ctxt3
**************************************)
1. (tid, 1) ∈dom σ0=⇒

(tid, 0) ∈dom (σ0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’)) ∧
int m’ ≤
the ((σ0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’)) (tid, 0)) =⇒
σ 0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’, (tid, 0) 7→
the ((σ0((tid, 1) 7→the (σ0 (tid, 1)) + int m’’)) (tid, 0)) -
int m’) |=
(s ←mbind [release tid 1 m’’’, status tid 1]

SYS ; unitSE (x = alloc_ok # release_ok # s)) =⇒
σ 0 |=(s ←mbind S PUT; unitSE (s = x))

(...)

A such proof context refinement process, is executed until the input sequence of actions is empty, which
let us to get, for the case of a specification of a simple operational semantics, what we call test normal
forms, represented by subgoals. Of course, the proof statement can be connected to solver constraints
with HOL-TESTGEN command gen_test_data, which will instantiate the free variables,e. g. σ 0,
tid in the different subgoals of the proof statement, by a real data that satisfies the derived constraints.

EUROMILS D31.4 Page 38 of 438

D31.4 – Test-Generation Methods

3.6 Optimized Symbolic Execution Rules

Symbolic execution rules, are logical inference rules used to simulate the behavior of a given system (or a
program) by showing the effect of the operational semantics of that system (or program) on the symbolic
variables. Symbolic variables are a typed syntactic names used to represent a given object (i. e. a passive
entity), that may have an infinite set of representations (values), in a system. In general, two kind of
variables are distinguished, global variables and local variables. For instance, in our test specification
test_status the variable σ 0 can be seen as a global variable(i. e. an object which can be modified by
all subjects (threads)), while the arguments, e. g. m’’, of actions e. g. alloc tid 1 m’’, in the input
sequence can be seen as a local variables (i. e. an object which can be modified only by its owner). In
order to provide more informations about the symbolic execution rules used during the simulation of the
behavior of MyKeOS we would introduce the generic scheme of their hol! representation:

lemma exec_mbindFStop_E:
assumes A:(σ |=(s ←mbind (in_ev # S) efsm; return (P s)))
and B:E σ=⇒

((upd σ) |=(s←mbind S efsm;return(P(out_ev σ# s)))) =⇒
Q

shows Q
by(insert A, rule B, simp_all del: mbind’_bind)

Code 1: A Generic Elimination Rule For Symbolic Execution

If we observe more closely the previous inference rule, we can figure out that the rule is an elimination
rule. An elimination rule is an inference rule that eliminate a given constructor from the premises, i. e. in
the rule exec_mbindFStop_E we had eliminated in_ev from the input sequence (in_ev # S). Ac-
tually, the scheme of an elimination rule matches with the scheme of our test specifications, i. e. the free
variable Q in exec_mbindFStop_E will match with σ 0 |=(s ←mbind S PUT; return (s = x))

in test_status, the assumption A in exec_mbindFStop_E will match with SPEC in test_status,
and the resulting proof context after the application of this elimination inference rule on the test spe-
cification test_status will be, the instatiation of the assumption B in exec_mbindFStop_E by the
variables of SPEC. We call a such proof context transformation process ematching, and it can be ex-
pressed in Isabelle by the tactic ematch_tac. Moreover note, our symbolic execution process based on
proof context transformations, has an enormous performance gain effect on symbolic execution engine of
Isabelle. Because, the whole calculation process is reduced technically to a formal syntactic transforma-
tion of the proof context, instead of calculus based on substitution, rewriting, instantiation, introduction,
etc.

3.7 Test Drivers for Concurrent C Programs

The generation of the test-driver is a non-trivial exercise since it is essentially two-staged: Firstly, we
chose (from the different options the Isabelle code-generator offers) to generate an SML test-driver,
which is then secondly, compiled to a C program that is linked to the actual program under test. A
test-driver for HOL-TESTGEN consists of four components:

• main.sml the global controller (a fixed element in the library),
• harness.sml a statistic evaluation library (a fixed element in the library),
• X_script.sml the test-script that corresponds merely one-to-one to the generated test-data

(generated)
• X_adapter.sml a hand-written program; in our scenario, it replaces the usual (black-box) pro-

gram under test by SML code, that calls the external C-functions via a foreign function interface.

EUROMILS D31.4 Page 39 of 438

D31.4 – Test-Generation Methods

On all three levels, the HOL-level, the SML-level, and the C-level, there are different representations of
basic data-types possible; the translation process of data to and from the C-code under test has therefore
to be carefully designed (and the sheer space of options is sometimes a pain in the neck). Integers, for ex-
ample, are represented in two ways inside Isabelle/HOL; there is the mathematical quotient construction
and a "numerals" representation providing "bit-string-representation-behind-the-scene" enabling relat-
ively efficient symbolic computation. Both representations can be compiled "natively" to data types in
the SML level. By an appropriate configuration, the code-generator can map "int" of HOL to three dif-
ferent implementations: the SML standard library Int.int, the native-C interfaced by Int32.int,
and the IntInf.int from the multi-precision library gmp underneath the polyml-compiler. We do
a three-step compilation of data-representations Model-to-Model, Model-to-SML, SML-to-C. A basic
preparatory step for the initializing the test-environment to enable test-generation is:

test_spec test_status2:
assumes system_def : (c0,no) ∈dom σ0

and store_finite : σ0= map_of T
and test_purpose : test_purpose [(c0,no),(c0,no’)] S
and sym_exec_spec :

σ 0 |=(s ←mbind’ S SYS; return (s = x))
shows σ 0 |=(s ←mbind’ S PUT; return (s = x))
apply(rule rev_mp[OF sym_exec_spec])
apply(rule rev_mp[OF system_def])
apply(rule rev_mp[OF test_purpose])
apply(rule_tac x=x in spec[OF allI])
apply(gen_test_cases 3 1 PUT)
apply(auto intro: P1’’ P2’’)
store_test_thm mykeos_simple
gen_test_data mykeos_simple
generate_test_script mykeos_simple

The tool store_test_thm is a tool from HOL-TestGen framework. This tool provide the ability to
users to store a given proof context of the test specification and refer to this proof context by a label
(i. e. mykeos_simple). The tool gen_test_data from HOL-TestGen provide the ability to users to
instantiate the symbolic variables inside abstract test cases by concrete data. The latter step is done by
sending proof obligations, i. e. constraints on the variables generated during the symbolic execution, to
constraint solvers in order to instantiate them with satisfiable witnesses. The tool gen_test_script
is provided by HOL-TestGen framework. Basically, the tool provide the ability to users to transform
the proof context stored using store_test_thm to a code equation; code equations are rewriting rules
used as inputs for Isabelle code generators. For instance, the following code equation is resulting from
the application of gen_test_script on the proof context labeled by the name mykeos_simple:

mykeos_simple.test_script ≡
[([], lazy ((λa. Some -1) |=

(s ←mbind [alloc 3 5 (nat 2), status 3 5]
PUT; unitSE (s = [alloc_ok, status_ok (nat 1)])))),

([], lazy ((λa. if a = (2, 3) then Some 8465 else Some 8) |=
(s ←mbind [release 2 3 (nat 8466), status 2 3] PUT;
unitSE (s = [])))),

([], lazy ((λa. Some 8468) |=
(s ←mbind [release 2 3 (nat 1), status 2 3]

PUT; unitSE (s = [release_ok, status_ok (nat 8467)])))),
([], lazy ((λa. if a = (2, 3) then Some 8465 else Some 8) |=

(s ←mbind [release 2 3 (nat 8466), status 2 3] PUT;
unitSE (s = [])))),

([], lazy ((λa. Some -1) |=
(s ←mbind [alloc 2 3 (nat 1), alloc 2 3 (nat 1), status 2 3]

PUT;
unitSE (s = [alloc_ok, alloc_ok, status_ok (nat 1)])))),

EUROMILS D31.4 Page 40 of 438

D31.4 – Test-Generation Methods

(...)]

3.7.1 The adapter

In the following, we describe the interface of the SML-program under test, which is in our scenario an
adapter to the C code under test. This is the heart of the Model-to-SML translation. Actually, during the
execution of the test script, the free variable specified inside the test specification under name PUT will
be replaced by an adapter. In fact, the adapter is a function defined on the HOL-level, and its semantic
is based on constant definitions called stubs. The stubs are replaced later on by the semantic of the im-
plementation using code serialisation technic offered by the interface of Isabelle code generator to link
the Model-level with SML-level, and then we use MLton compiler to link SML-level to C-level. The
HOL-level stubs for the program under test are declared as follows:

(*The definition of the stubs*)
consts status_stub :: task_id ⇒int ⇒(int, ’σ)MON_SE
consts alloc_stub :: task_id ⇒int ⇒int ⇒(unit, ’σ)MON_SE
consts release_stub:: task_id ⇒int ⇒int ⇒(unit, ’σ)MON_SE

This translation step prepares already the data-adaption; the type nat is seen as an predicative constraint
on integer (which is actually not tested). On the Model-to-Model level, we provide a global step function
that distributes to individual interface functions via stubs (mapped via the code generation to SML . . .).
This translation also represents uniformly nat by int’s.

fun stepAdapter :: (in_c ⇒(out_c, ’σ)MON_SE)
where

stepAdapter(status tid thid) =
(x ←status_stub tid thid; return(status_ok (my_nat_conv x)))

| stepAdapter(alloc tid thid amount) =
(_ ←alloc_stub thid thid (int amount); return(alloc_ok))

| stepAdapter(release tid thid amount)=
(_ ←release_stub tid thid (int amount); return(release_ok))

The stepAdapter function links the HOL-world and establishes the logical link to HOL stubs which
were mapped by the code-generator to adapter functions in SML, which call internally to C-code inside
X_adapter.sml via a Foreign Function Interface (FFI).

3.7.2 Code generation and Serialisation

In order to generate concrete code from our theories we will use the code generator [haf15] facilities of
Isabelle/HOL. It allows to turn a certain class of HOL specifications into corresponding executable code
in a target language (i. e. SML). In this section, we will show how we build a setup to generate SML file
containing our test script. In the first place, we will generate 2 SML files. The first one containing all
datatypes used in our test specification. The second one containing an adapter for the variable represent-
ing the system under test called PUT in the test specification test_status2. Therefore, both files will
be used as libraries for the test script and help to increase its readability. Using Isabelle serialiser, we
configure the code-generator to identify the PUT with the generated SML code implicitly defined by the
above stepAdapter definition.

(*Code Setup for Datatypes*)

(* Setup for input actions *)
code_printing

EUROMILS D31.4 Page 41 of 438

D31.4 – Test-Generation Methods

type_constructor in_c => (SML) Datatypes.in_c
|constant alloc => (SML) !(Datatypes.Alloc (_ , _ , _))
|constant release => (SML) !(Datatypes.Release (_ , _ , _))
|constant status => (SML) !(Datatypes.Status (_ , _))

(* Setup for the outputs *)
code_printing
type_constructor out_c => (SML) Datatypes.out’_c
|constant alloc_ok => (SML) Datatypes.Alloc’_ok
|constant release_ok => (SML) Datatypes.Release’_ok
|constant status_ok => (SML) !(Datatypes.Status’_ok (_))

Basically, the link between the stubs in HOL world and the SML functions that calls to the C ones is done
by asking Isabelle code generator to replace the stubs by functions inside a given SML file. Technically
this step is resumed by:

(*Serialisation: replacing the HOL stubs by actual semantics
represented on SML-level*)

code_printing
constant status_stub (SML MyKeOSAdapter.status)

code_printing
constant alloc_stub (SML MyKeOSAdapter.alloc)

code_printing
constant release_stub (SML MyKeOSAdapter.release)

By the same technic we ask the code generator to replace the constant PUT by the function stepAdapter.
The latter function, can be generated automatically, as we will see in the last step, and it contains the
calls to the stubs which are now SML functions:

(*Serialisation: Linking the free variable PUTwith
the concrete SML-code via stepAdapter*)

code_printing
constant PUT=> (SML) stepAdapter

And there we go and generate the mykeos_simple:

export_code stepAdapter mykeos_simple.test_script in SML
module_name TestScript file impl/c/mykeos_simple_test_script.sml

3.7.3 Building Test Executables

Inside the SML file containing the module adapter.sml, we will use again serialisation technic via
the compiler MLton. Actually, MLton provides a foreign function interface to C, this interface is used
to call the actual semantic of the program under test. MLton compiler provide a command to build
the test executable for our generated TestScript in SML language, containing called function from the
implemantation in C language.

3.7.4 GDB and Concurrent Code Testing

Actually the generated build from MLton compiler will contain tests for threads executed in concurrency.
The problem with executing tests on concurrent code is that, we do not know if the generated tests will
be applied to their corresponding executions in the SUT, because of the non-deterministic choices of
thread’s actions done by a system schedular. In order to deal with this kind of problems, we will execute
the test executable inside a GDB session that controls the execution of the concurrent code and make it
conform to the generated executions from a test scenario.

EUROMILS D31.4 Page 42 of 438

D31.4 – Test-Generation Methods

3.8 Conclusions

In this chapter we have presented our major contribution during this document. The chapter contains the-
oretical and technical foundations to test C concurrent program. On the theoretical side, we had presented
our test generation framework which relies on a monadic test theory implemented in Isabelle/hol!. Our
framework is equipped with a specification language based on monads that contains important definitions
for testing and symbolic execution activities. First, in order to show the expressive power of our specific-
ation language, an isomorphism between the automata world and monads world was presented. Second,
in order to provide a generic framework to express state exception behavior, two monad operators were
introduced bindSE and unitSE. Based on the latter operators, a new concept called valid test sequence
was defined. On the one hand, the notion of a valid test sequence is used to express the behavior of a
given system. On the other hand, it is executable and can be treated by a family of symbolic executions
calculi. A set of generic symbolic execution rules, for the defined operators, were introduced and in order
to show how these concepts are used to model and/or to symbolically execute a given system, a running
example on a simple OS called MykeOS was presented. Third, we proposed a generic scheme called test
specification, expressed technically by a refinement relation, to link a specification with an implementa-
tion, then we had showed how it can be instantiated with a family of test conformance relations. Finally,
in order to optimize the symbolic execution process for our test specifications, especially for the case of
sequence test scenarios, an approach based on the notion of coverage criteria was proposed.
On the technical side, we had showed how Isabelle/hol! easily supports and carries our tools, going from
symbolic execution on hol! down to test script on code level.

EUROMILS D31.4 Page 43 of 438

D31.4 – Test-Generation Methods

Part III

Test-Generation for the PiKeOS IPC

EUROMILS D31.4 Page 44 of 438

D31.4 – Test-Generation Methods

Chapter 4

Testing PikeOS API

4.1 Introduction

In the following, we will outline the PikeOS model (the full-blown model developed as part of the EUR-
OMILS project is about 20 kLOC of Isabelle/HOL code), and demonstrate how this model is embedded
into our monadic testing theory.
As a foundation for our symbolic computing techniques, we refine the theory of monads to embed in-
terleaving executions with abort, synchronization, and shared memory to a general but still optimized
behavioral test framework.
This framework is instantiated by a model of PikeOS inter-process communication system-calls. Inher-
iting a micro-architecture going back to the L4 kernel, the system calls of the IPC-API are internally
structured by atomic actions; according to a security model, these actions can fail and must produce
error-codes. Thus, our tests reveal errors in the enforcement of the security model.
The chapter proceed as follow: In section 4.2 an informal description of PikeOS IPC is presented. The
section 4.3 contains the formalisation of PikeOS IPC in Isabelle/hol!. In order to catch the bahavior of
the latter a new monad combinator is introduced in subsection 4.3.4. Moreover, a generic memory model
is presented in section 4.4, it is used to specify some PikeOS IPC atomic actions. Finally, in order to test
PikeOS IPC, our testing approach is extended by new notions, in particular these are:

• a new coverage criteria is defined in subsection 4.5.1,

• a new symbolic execution rules are derived in subsection 4.5.3,

• a new methodology for building test drivers is presented in subsection 4.5.6.

4.2 PikeOS IPC Protocol

The IPC mechanism [SYS13a, SYS13b] is the primary means of thread communication in PikeOS. His-
torically, its efficient implementation in L4 played a major role in the micro-kernel renaissance after
the early 1990s. Microkernels had received a bad reputation, as systems built on top were performing
poorly, culminating in the billion-dollar failure of the IBM Workplace OS. A combination of shared
memory techniques—the MMU is configured such that parts of virtual memory space are actually rep-
resented by identical parts of the physical memory—and a radical redesign of the IPC primitives in L4
resulted in an order-of-magnitude decrease in IPC cost. Also in PikeOS, IPC message transfer can op-
erate between threads which may belong to different tasks. However, the kernel controls the scope of
IPC by determining, in each instance, whether the two threads are permitted to communicate with each
other. IPC transfer is based on shared memory, which requires an agreement between the sender and
receiver of an IPC message. If either the sending or the receiving thread is not ready for message trans-
fer, then the other partner must wait. Both threads can specify a timeout for the maximum time they
are prepared to wait and have appropriate access-control rights. Our IPC model includes eight atomic
actions, corresponding more-or-less to code sections in the API system calls p4_ipc_buf_send()
and p4_ipc_buf_recv() protected by a global system lock. If errors in these actions occur—for

EUROMILS D31.4 Page 45 of 438

D31.4 – Test-Generation Methods

example for lacking access-rights—the system call is aborted, which means that all atomic actions be-
longing to the running system call as well as the call of the communication partner were skipped and
execution after the system calls on both sides is continuing as normal. It is the responsibility of the
application to act appropriately on error-codes reported as a result of a call. In our sequence test scen-
arios, and using our symbolic execution process running on the top of HOL-TESTGEN, we show how
we generate tests from our formal model of the IPC mechanism, we build a test driver and show how we
can run the generated tests against the PikeOS IPC implementation defined in C-level.

4.3 PikeOS Model

We model the protocol as composition of several operational semantics; this composition is represented
by monad-transformers adding, for example, to the basic transition semantics the semantics for abort
behavior.

4.3.1 State

In our model, the system state is an abstraction of the VMIT (which is immutable) and mutable task
specific resources. It is presented by the (polymorphic) record type:

record
(’memory,’thread_id,’thread,’sp_th_th,’sp_th_res,’errors)kstate=
resource :: ’memory
current_thread :: ’thread_id
thread_list :: ’thread list
communication_rights :: ’sp_th_th
access_rights :: ’sp_th_res
error_codes :: ’errors
errors_tab :: ’thread_id ⇀’errors

Note that the syntax is very close to functional programming languages such as SML or OCaml or F#.
The parameterization is motivated by the need of having different abstraction layers throughout the en-
tire theory; thus, for example, the resource field will be instantiated at different places by abstract shared
memory, physical memory, physical memory and devices, etc.—from the viewpoint of an operating
system, devices are just another implementation of memory. In the entire theory, these different instan-
tiations of kstate were linked by abstraction relations establishing formal refinements. Similarly, the
field current_thread will be instantiated by the model of the ID of the thread in the execution context and
more refined versions thereof. thread_list represents information on threads and there executions. The
communication_rights field represent the communication policy defined between the active entities (i. e.,
threads and tasks). The field access_rights represent the access policy defined between active entities
and passive entities (i. e., system resources).
For the purpose of test-case generation, we favor instances of kstate which are as abstract as possible
and for which we derived suitable rules for fast symbolic execution.

4.3.2 Actions

As mentioned earlier, the execution of the system call can be interrupted or aborted at the border-line
of code-segments protected by a lock. To avoid the complex representation of interruption points, we
model the effect of these lock-protected code-segments as atomic actions. Thus, we will split any system
call into a sequence of atomic actions (the problem of addressing these code-segments and influencing
their execution order in a test is addressed in the next section). Atomic actions are specified by datatype
as follows:

datatype (’ipc_stage,’ipc_dir)action__ipc = IPC ’ipc_stage ’ipc_dir
datatype p4_stage__ipc = PREP | WAIT | BUF | MAP | DONE

EUROMILS D31.4 Page 46 of 438

D31.4 – Test-Generation Methods

datatype (’thread_id ,’adresses) p4_direct__ipc =
SEND ’thread_id ’thread_id ’adresses

| RECV ’thread_id ’thread_id ’adresses

type_synonym ACTION__ipc =
(p4_stage__ipc,(nat×nat×nat,nat list)p4_direct__ipc)action__ipc

Where ACTION__ipc is type abbreviation for IPC actions instantiated by p4_direct__ipc. The type
ACTION__ipc models exactly the input events of our monadic testing framework. Thread IDs are triples
of natural numbers that specify the resource partition the thread belongs to as well as the task and the
individual id. The stepping function as a whole is too complex to be presented here; we refrain on the
presentation of a portion of an auxilliary function of it that models just the PREP_SEND stage of the IPC
protocol; it must check if the task and thread id of the communication partner is allowed in the VMIT,
if the memory is shared to this partner, if the sending thread has in fact writing permission to the shared
memory, etc. The VMIT is part of the resource, so the memory configuration, and auxiliary functions like
is_part_mem_th allow for extracting the relevant information from it. The semantic of the different
stages is described using a total functions:

definition
PREPSEND ::ACTION_ipc state_id⇒ ACTION_ipc ⇒ACTION_ipc state_id
where PREPSEND σact =

(case act of (IPC PREP (SEND caller partner msg)) ⇒
...
if is_part_mem_th (get_thread_by_id’’ partner σ) (resource σ)
then
if IPC_params_c1 (get_thread_by_id’’ partner σ)
then ...)

Where PREPSEND, WAITSEND, BUFSEND, and DONESEND define an operational semantic for the atomic
actions of the PikeOS IPC protocol.

4.3.3 Traces, executions and input sequences

During our experiments, we will generate input sequences rather than traces. An input sequence is a list
of a datatype capturing atomic action input syntactically. An execution is the application of a transition
function over a given input sequence. Using mbind, the execution over a given input sequence is can be
immediately constructed.

definition execution = (λis ioprog σ. mbind is ioprog σ)

4.3.4 Aborted executions

Our model support the notion of abort. An abort is an action done by the system to stop the execution of
a given system call. A system call can be aborted for different reasons:

• timeouts: a system call can not finish its execution because a timeout happened. For instance, a
caller tried to access to a given resource and run out of the specified waiting time without success,
i. e. the resource was not available at that moment. Or the caller run out of the specified waiting
time when he was about to wait for a given input from another call.

• other error codes: a system call can not finish its execution because of a returned error code during
its execution, i. e. on of the call conditions was not satisfied, e. g. wrong communication partner.
Thus, the system stops the execution of the call.

In all cases, when an abort happens to a given PikeOS call, the remaining atomic actions of the call are
canceled (not executed). For the case of the IPC protocol both calls, the one coming from the caller and

EUROMILS D31.4 Page 47 of 438

D31.4 – Test-Generation Methods

if executing DONE stage then
if an error happened then

Update error table by removing the error flag of the current thread and don’t execute the
DONE action and return the error code.

else
Execute the DONE action.

end
else

if Executing a different IPC stage from DONE then
if an error happened then

Update the error table by putting an error flag on both threads in the IPC
communication, the caller and his partner, and purge the executed action.

else
Execute the action.

end
end

end
Algorithm 1: A pseudo code for the Abort operator

the one coming from his communication partner, are canceled. To express the behavior of the abort in
our model we will add to our specification language a new monad combinator. The behavior expressed
by this combinator is abstracted by the pseudo code in algorithm 1.
In the case of an aborted system call, the semantic of our combinator express the same behavior as stutter
steps in automata models, i. e. we stay in the same state, only the error table will change. The error
table is modeled by the field errors_tab of the record (...)kstate representing the system state,
the field is instantiated by a partial function with type error_tab:: thid ⇀ error, and it is used to save (i. e.
marks by a flag) the threads in error state, i. e. threads who cause errors during the execution of their
system call. Every thread inside the error table is considered as a thread in an error state, when a given
system call executed by a given thread is aborted, i. e. the executed action provide an output error code,
we update the thread table by adding the thread and its error. Before executing any atomic action (stage)
we will check the error table, if a given thread executing an action different from DONE is in the domain
of the function that specify the error table, then we purge his executed action (we do nothing to the state
of the system) else we will execute the action. During every DONE action execution, if the thread is in
the error table then, we remove it from the domain of the function that specify the error table else, we
execute the DONE action.
The hol! representation of the new monad operator is abort__lift, the latter express the explained be-
havior and will be wrapped around our transition function for PikeOS IPC protocol. The wrapper trans-
forms the behavior of the basic transition function related to IPC protocol presented in subsection 4.3.5,
to a the behavior abstracted by algorithm 1.

fun abort__lift ::
(ACTION__ipc ⇒(errors, (ACTION__ipc,’a) state__id_scheme)Mon_SE) ⇒
(ACTION__ipc ⇒(errors, (ACTION__ipc,’a) state__id_scheme)Mon_SE)

where abort__lift ioprog a σ=
(case a of
(IPC DONE (SEND caller partner msg)) ⇒
if caller ∈dom (act_info (th_flag σ))
then unit_SE (fst (the((act_info (th_flag σ)) caller)))

(*shoud be: my error*)
(σ(|th_flag := (th_flag σ)

(|act_info := ((act_info (th_flag σ))
(caller := None))|) |))

else unit_SE (NO_ERRORS) (σ) (*execute done*)

EUROMILS D31.4 Page 48 of 438

D31.4 – Test-Generation Methods

(...)
| (IPC _ (SEND caller partner msg)) ⇒

if caller ∈dom (act_info (th_flag σ))
then unit_SE(get_caller_error caller σ(*should be: my error*)) σ

(* purge and add error flag*)
else (case ioprog a σof

None ⇒None (*never happens in our exec fun*)
| Some(NO_ERRORS, σ’) ⇒unit_SE(NO_ERRORS) (σ’)
| Some(out’, σ’) ⇒unit_SE(out’)

(set_caller_partner_error caller partner σσ’ out’ a))
(*both caller and partner were ’informed’ to be in error-state.*)

(...))

In subsection 4.5.3 we will derive generic symbolic execution rules related to the combination of a given
monad that specify an input output program ioprog with the abort operator, then we refine these rules
for the specific case when the operational semantic is related to PikeOS IPC.

4.3.5 IPC Execution Function

To combine the different semantics of IPC atomic actions we can use two ways of modeling:

• An isabelle function fun: Express the semantic with explicit case splitting on actions type in a
single function. Useful for the automation of the process of symbolic execution. Used for experi-
mental purposes.

• The composition operator Fun.comp: equipped with the syntax f o g. It helps to express the
semantic by a set of compositions between different Isabelle constant definitions, these definitions
are wrapped around a monad function that express a transition function. Useful to express proofs
on our coverage criteria, proofs on refinement and abstractions, but do not help for the automation
process of symbolic execution.

Using the compositional way of modeling, the execution semantic for IPC protocol is represented on
Isabelle as following:

definition IPC_protocol =
PREPSEND_lift o PREP_RECV_lift o
WAITSEND_lift o WAIT_RECV_lift o
BUFSEND_lift o BUF_RECV_lift o
DONESEND_lift o DONE_RECV_lift

The second way of modeling the transition function is the following total function:

fun exec_action
::ACTION_ipc state_id⇒ ACTION_ipc ⇒ACTION_ipc state_id
where
PREPSEND_run:
exec_action σ(IPC PREP (SEND caller partner msg)) =
PREPSEND σ(IPC PREP (SEND caller partner msg))|
(...)

The function exec_action is adapted to the monads using the following definition:

definition exec_action_Mon
where exec_action_Mon =
(λact σ. Some (error_codes(exec_action σact),
exec_action σact))

EUROMILS D31.4 Page 49 of 438

D31.4 – Test-Generation Methods

The latter function represent the basic operational semantic for PikeOS IPC and it will be combined with
the semantic of the abort operator presented in subsection 4.3.4. For instance we wrap around the func-
tion exec_action_Mon the operator abort__lift in order to get, abort__lift (exec_action_Mon

act σ). Also we can compose abort__liftwith IPC_protocol to get abort__lift o IPC_protocol

which is similar to abort__lift (exec_action_Mon act σ). In subsection 4.5.3 we will derive
specific symbolic execution related to abort__lift (exec_action_Mon act σ).

4.3.6 System calls

As mentioned earlier, PikeOS system calls are seen as sequence of atomic actions that respect a given
ordering. Actually, each system call can perform a set of operations. On system-level, the execution of
some operations can be ignored by specifying the corresponding parameters in the call by null. PikeOS
IPC API provides seven different calls, the most general one is the call P4_ ipc(). Using P4_ ipc(), five
operations can be performed:

1. Send a copied message,
2. Receive a copied message,
3. Receive an event (not modeled),
4. Send a mapped message, and
5. Receive a mapped message.

The corresponding Isabelle model for the call is:

datatype (’thread_id, ’msg) P4_IPC_call =
P4_IPC_call ’thread_id ’thread_id ’msg

| P4_IPC_BUF_call ’thread_id ’thread_id ’msg
| P4_IPC_MAP_call ’thread_id ’thread_id ’msg

(...)

4.4 A Generic Shared Memory Model

Shared memory is the key for the L4-like IPC implementations: while the MMU is usually configured
to provide a separation of memory spaces for different tasks (a separation that does not exist on the level
of physical memory with its physical memory pages, page tables, . . .), there is an important exception:
physical pages may be attributed to two different tasks allowing to transfer memory content directly from
one task to another.
In order to model a such memory implementation, we will use an abstract memory model with a shar-
ing relation between addresses. The sharing relation is used to model the IPC map operation, which
establishes that memory spaces of different tasks were actually shared, such that writes in one memory
space were directly accessed in the other. Under the sharing relation, our memory operations respect two
properties:

1. Read memory on shared addresses returns the same value.

2. All shared addresses has the same value after writing.

In formal methods, the latter two properties are called invariants. An invariant is a property preserved
by a class of mathematical object when a certain updates (changes) are performed on that class. The
notion of invariants will be used in our model of shared memory. In our memory model, the two listed
invariants will be preserved on a tuple type consisting of a pair of two elements: a partial function and
an equivalence relation. While the partial function will specify the memory, i. e. the function represent
a mapping from its domain consisting of a set of adresses to its range consisting of their corresponding
data, the equivalence relation determines the different equivalent classes for addresses. Actually, these
equivalent classes are resulting from the different map operations performed by processes of a system.

EUROMILS D31.4 Page 50 of 438

D31.4 – Test-Generation Methods

In order to implement this model on top of Isabelle/hol! we will use the specification construct typedef,
and this for two reasons:

1. It offers a way to define an abstract type that can be equipped with invariants.

2. A defined operation on that abstract type, can be easily used for code generation and this, only by
providing a soundness proof which express that the operation preserve the invariants on the defined
type.

The hol! specification for our memory abstract type is done by the following

typedef (’α, ’β) memory =
{(σ::’α ⇀’β, R). equivp R ∧(∀x y. R x y −→σx = σy)}
proof
show (Map.empty, (op =)) ∈?memory
by (auto simp: identity_equivp)

qed

This type definition defines an isomorphism between the set on the right hand side that contains pairs
of the type (’a ⇀’b)×(’a ⇒’a ⇒bool) and the set defined by the new type (’α, ’β)memory ;
the first element of a pair is a partial function representing a mapping from adresses to data, the second
element is an equivalence relation. The type (’α, ’β)memory is introduced by two fresh constant sym-
bols, the function Abs_memory for abstracting the pairs, and Rep_memory the concretization function
that refer to the pairs. The application of a given operation op on the pairs is isomorphically the same as
the application of Abs_op on the type (’α, ’β)memory with the only difference: the use of the type
(’α, ’β)memory for the definition of the different operations assure that the latter talk about represent-
atives which preserve the invariant. Because the set of tuples of type (’a ⇀’b)×(’a ⇒’a ⇒bool)

is infinite and may contain tuples that does not preserve the desired invariant, thus the direct use of op
is not consistent. That is why we will always define a function on representatives in the following, and
this in order to get the desired effects on the pairs. Afterwards we implement and use its corresponding
abstraction that refers implecitly to representatives preserving the invariant.
Implecitely, five theorems are generated by Isabelle for the functions Abs_memory and Rep_memory,
where Rep_memory_inverse, ... are names for the generated theorems:

Rep_memory_inverse:
Abs_memory (Rep_memory x) = x

Abs_memory_inverse:
?y ∈{(σ, R). equivp R ∧(∀x y. R x y −→σx = σy)} =⇒
Rep_memory (Abs_memory ?y) = ?y

Rep_memory_inject:
(Rep_memory ?x = Rep_memory ?y) = (?x = ?y)

Rep_memory:
Rep_memory ?x ∈{(σ, R). equivp R ∧(∀x y. R x y −→σx = σy)}

These theorems will help in the proof of the different lemmas used for reasoning on a defined constant
based on the type (’α, ’β)memory. Using this new defined abstract type we will now specify three
main memory operations, which are write denoted by _ :=$ _ read by _ $ _ and map by _ (_ on_).
The hol! specification of these memory operations is represented for instance, for the case of the map
operation by:

EUROMILS D31.4 Page 51 of 438

D31.4 – Test-Generation Methods

fun transfer_rep ::(’a ⇀’b) ×(’a ⇒’a ⇒bool) ⇒’a ⇒’a ⇒
(’a ⇀’b) ×(’a ⇒’a ⇒bool)

where transfer_rep (m, r) src dst =
(m o (id (dst := src)),
(λ x y . r ((id (dst := src)) x) ((id (dst := src)) y)))

lift_definition
add_e :: (’a,’b)memory ⇒’a ⇒’a ⇒(’a, ’b)memory (_ ’(_ on_’))
is transfer_rep using transfer_rep_sound
by simp

The function transfer_rep is an update function on representatives, i. e. on the pairs of type (’a

⇀’b)×(’a ⇒’a ⇒bool), and the function add_e is its abstraction defined on the type (’α,

’β)memory.
Basically, the function transfer_rep takes a memory represented by the pair (’a ⇀’b)×(’a ⇒
’a ⇒bool), a source address src, a destination adress dst and update the pair, in order to express the
effect of a memory map on that pair, as follow:

1. the first element of the pair, which is a partial function representing a mapping from adresses to
data, is updated by assigning the data of the source address to the destination adress

2. the second element of the pair, which is an equivalent relation between adresses, is updated by
adding the destination adress to the same equivalent class of the source adress, and at the same
time the relation between the destination and its old equivalent class is destroyed. This definition
was validated by PikOS kernel engineers

Actually, we will not directly use transfer_rep, the function will be abstracted by add_e, and this
is advantageous for the following reasons; on one hand we make sure that, on model level, add_e
will always return pairs that preserve the invariant. On the other hand, the specification constraint
lift_definition provide automatically a code generation setup for memory operations based on
the type (’α, ’β)memory, i. e. the generated implementation will contain implicitly only pairs that
preserve the invariant.
If we look closely, we can observe that a little proof was mandatory to get the definition of add_e. In
fact, in order to preserve the consistency of its global context, Isabelle forces a such proof. This proof is
used to make sure that the invariant defined in the abstract type is preserved by the definition of add_e.
In other words, we have to make sure that the added definition is sound and its use does not break the
invariant, a such soundess proof was provided by the following lemma:

lemma transfer_rep_sound:
assumes σ∈{(σ, R). equivp R ∧(∀x y. R x y −→σx = σy)}
shows transfer_rep σsrc dst ∈

{(σ, R). equivp R ∧(∀x y. R x y −→σx = σy)}
proof -
obtain mem and R
where P: (mem, R) = σand

E: equivp R and
M: ∀x y . R x y −→mem x = mem y

using assms equivpE by auto
obtain mem’ and R’
where P’: (mem’, R’) = transfer_rep σsrc dst
by (metis surj_pair)

have D1: mem’ = (mem o (id (dst := src)))
and D2: R’ = (λ x y . R ((id (dst := src)) x)

((id (dst := src)) y))
using P P’ by auto

have equivp R’

EUROMILS D31.4 Page 52 of 438

D31.4 – Test-Generation Methods

using E unfolding D2 equivp_def by metis
moreover have ∀y z . R’ y z −→mem’ y = mem’ z
using M unfolding D1 D2 by auto

ultimately show ?thesis
using P’ by auto

qed

In order to simplify the use of these abstract memory operations by constraint solvers, and also in order
to simplify the proof of symbolic execution rules related to these operations, lemmas expressing the
key properties of our shared memory model were introduced, we will present only the most important
lemmas:

definition sharing ::
’a ⇒(’a, ’b)memory ⇒’a ⇒bool ((_ shares()_/ _)

where (x shares (σ) y) ≡(snd(Rep_memory σ) x y)

definition Domain :: (’α, ’β)memory ⇒’α set
where Domain σ= dom (fst (Rep_memory σ))

lemma shares_result:
assumes 1: (x shares (σ) y)
shows σ $ x = σ$ y
using assms lookup_def shares_result
by metis

Sharing is modulo equivalence relation:

lemma sharing_refl [simp]: (x shares (σ) x)
using insert Rep_memory[of σ]
by (auto simp: sharing_def elim: equivp_reflp)

lemma sharing_sym [sym]:
assumes x shares (σ) y
shows y shares (σ) x
using assms Rep_memory[of σ]
by (auto simp: sharing_def elim: equivp_symp)

lemma sharing_trans [trans]:
assumes x shares (σ) y
and y shares (σ) z
shows x shares (σ) z
using assms insert Rep_memory[of σ]
by(auto simp: sharing_def elim: equivp_transp)

Sharing relates to memory write as follows:

lemma sharing_upd: x shares (σ(a :=$b)) y = x shares (σ) y (*$*)
using insert Rep_memory[of σ]
by(auto simp: sharing_def update_def

Abs_memory_inverse[OF update_sound])

lemma update_idem :
assumes 1: x shares (σ) y
and 2: x ∈Domain σ
and 3: σ $ x = z
shows σ (x:=$ z) = σ

proof -
have * : y ∈Domain σ
by(simp add: shares_dom[OF 1, symmetric] 2)

have σ(x :=$ (σ $ y)) = σ

EUROMILS D31.4 Page 53 of 438

D31.4 – Test-Generation Methods

using 1 2 * by (simp add: update_triv)
also have (σ $ y) = σ$ x
by (simp only: lookup_def shares_result [OF 1])

also note 3
finally show ?thesis .

qed

lemma update_share:
assumes z shares (σ) x
shows σ (x :=$ a) $ z = a
using assms
by (simp only: update_apply iftrue)

lemma update_other:
assumes ¬(z shares (σ) x)
shows σ (x :=$ a) $ z = σ$ z (*$*)
using assms
by (simp only: update_apply if_False)

theorem update_cancel:
assumes x shares (σ) x’
shows σ (x :=$ y)(x’ :=$ z) = (σ(x’ :=$ z)) (*$*)

proof -
(...)

theorem update_commute:
assumes 1:¬ (x shares (σ) x’)
shows (σ(x :=$ y))(x’ :=$ z) =

(σ(x’:=$ z)(x :=$ y))
proof -

(...)

Sharing relates to domain as follows:

lemma Domain_mono:
assumes 1: x ∈Domain σ
and 2: (x shares (σ) y)
shows y ∈Domain σ
using 1 2 Rep_memory[of σ]
by (auto simp add: sharing_def Domain_def)

EUROMILS D31.4 Page 54 of 438

D31.4 – Test-Generation Methods

lemma update_triv:
assumes 1: x shares (σ) y
and 2: y ∈Domain σ

shows σ (x :=$ (σ $ y)) = σ
proof -
{
fix z
assume zx: z shares (σ) x
then have zy: z shares (σ) y
using 1 by (rule sharing_trans)

have F: y ∈Domain σ=⇒x shares (σ) y =⇒
Some (the (fst (Rep_memory σ) x)) = fst (Rep_memory σ) y

by(auto simp: Domain_def dest: shares_result)
have Some (the (fst (Rep_memory σ) y)) = fst (Rep_memory σ) z
using zx and shares_result [OF zy] shares_result [OF zx]
using F [OF 2 1]
by simp

} note 3 = this
show ?thesis
unfolding update’’ lookup_def fun_upd_equivp_def
by (simp add: 3 Rep_memory_inverse if_cong)

qed

Similarly, we prove other rules for memory map and memory read which represent a memory theory
modulo sharing. The defined memory operations are used actually to implement the MAP and BUF
actions of PikeOS IPC. For more details on our hol! model for shared memory see section 4.9.

4.5 Testing PikeOS IPC

4.5.1 Coverage Criteria for IPC

An IPC call defines a communication relation between two threads. In PikeOS, IPC communications
can be symmetric, transitive but can not be reflexive (a thread can not send or receive an IPC message
for himself). The transitivity or intransitivity of IPC communications depends mainly on the defined
communication rights table and access rights table. In this section, we will define input sequences for
ipc calls. The defined input sequences express IPC communications between threads. Other definitions,
which are almost the same as the ones used for input sequences, will be used to derive the possible
communications between threads after the execution of an IPC call. The IPC input sequences will be
used in scenarios for testing information flow policy via IPC error codes, and also scenarios on access
control policy implemented via the two tables cited before.
The definition of an input sequence of type IPC communication is based on a new coverage criterion.
The criterion is based on the functional model of PikeOS IPC (see section 4.2), and also on our technique
to reduce the set of interleaving if two actions can commute (see section 3.4).

• Criterion3: IPC communications (IPCcomm) the interleaving space of input sequences gets a
complete coverage iff all IPC communications of a given SUT are covered.

IPC communications are input sequences derived under IPCcomm. They have the form:

EUROMILS D31.4 Page 55 of 438

D31.4 – Test-Generation Methods

[IPC PREP (SEND th_id th_id’ msg),
IPC PREP (RECV th_id’ th_id msg),
IPC WAIT (SEND th_id th_id’ msg),
IPC WAIT (RECV th_id’ th_id msg),
IPC BUF (RECV th_id’ th_id msg),
IPC DONE (RECV th_id’ th_id msg),
IPC DONE (SEND th_id th_id’ msg)]

4.5.2 Test Case Generation Process

In our model, a test case generation process is applied on the test scenario to generate concrete tests. To
apply a such process we will implicitly benefit from implemented tools, proofs and tactics of Isabelle.
As explained in section 3.5, a test scenario is specified by a test specification which is actually a lemma.
The goal is not to provide a proof for the lemma, the goal is just to normalize this HOL formula until we
get a test normal form (TNF) [BW13], and then we generate concrete test from the TNF. In our approach,
the process of test generation is composed of:

The Symbolic State.

In our model a symbolic state is the Isabelle lemma proof statement, i. e. a proof context.

The Symbolic Execution Process.

Our symbolic execution process can be seen as an exploration of the proof tree resulting from the ap-
plication of symbolic execution rules to a given test specification. Symbolic execution rules are Isabelle
proved lemmas. Those rules are inference rules derived from a given operational semantics. They are
used to simulate the execution of a given transition function, which specify the behavior of the system
under test. The application of a such rules allows for going from a symbolic state, i. e. a proof statement,
to another symbolic state. In sequence test scenarios this step is applied until the input sequence is empty.

The Normalization Process.

Normalization rules are Isabelle proved lemmas. Two main goal are distinguished for the normalization
process

1. First, normalization rules are used to simplify the abstract test cases generated after the application
of symbolic execution rules, in order to get a proof statement containing a set of TNFs that can be
easily treated by constraint-solvers.

2. Second, normalization rules are used to eliminate as much as possible unfeasible executions in the
proof tree, i. e. proof statements that lead to true, (see subsection 4.5.4 for further explanation).

In our model, the outputs from this step are abstract test cases. Abstract test cases are a normalized
proof goals generated from symbolic execution process. Proof goals are normalized, i. e., reduced to
clauses over linear arithmetic, list, and map-theories in a format that can be treated by the subsequent
constraint solver. Outputs from the normalization process are also called TNFs. In our approach, the step
of normalization takes most of the generation time.

EUROMILS D31.4 Page 56 of 438

D31.4 – Test-Generation Methods

The Test Theorem.

After the normalization process we generate the test theorem. Actually HOL-TESTGEN provides a tactic
for the generation of a test theorem of the form:

C1(a1) ⇒ P (a1, PUT a1) . . . Cn(an) ⇒ P (an, PUT an) THY P (H1 ∧ · · · ∧Hn)

TS

The test theorem decompose each abstract test case in the local proof context generated from a test
specification to 3 parts:

1. Proof Obligations: are the premises of a given abstract test case. e. g. in the previous formula a
proof obligation is Ci(ai).

2. Testing Hypotheses: In addition to testing hypotheses expressed as assumptions of a given test
specification, HOL-TESTGEN offer a way to introduce testing hypotheses, e. g. regularity and
uniformity hypotheses, to a test specification. In the previous formula testing hypothesis are Hi.
THY P is a constant definition used as markup for the testing hypothesis during the generation of
the test theorem.

3. Abstract Test Cases: also called TNFs, they are represented in the test theorem byCi(a1) ⇒ P (ai, PUT ai),
where P is the oracle, and ai is a concrete instance that must satisfy the constraint Ci.

A test theorem state that a concrete test case passes if the application of a program under test PUT on a
concrete instance ai satisfies the oracle P .

Test Data Generation.

The proof obligations of each abstract test case are sent to constraint-solvers such as Z3[dMB08], in
order to construct a concrete (“ground”) data for the variables. These instantiated abstract test cases
represent actually execution paths in a program under test; they are used as test cases for this system.

4.5.3 Symbolic Execution Rules

Symbolic execution rules are inference rules for the elimination of the inputs in the test specification. In
our model we distinguish two categories of these rules:

1. The generic ones: they are related to operators of our specification language, i. e. the proposed
monad operators in our theory like:bindSE abort__lift, etc. These rules are fixed element
in the theory, and they talk in general about any state exception monad ioprog, of type (’ι⇒
(’o,’σ)MONSE), that represent any transition function with state exception.

2. The specific ones: they are a refinement of the generic ones. These rules talk about an intantiation
of ioprog by a given operational sematic.

The Generic Rules.

Generic rules are elimination rules derived for the generic operational semantics expressed by the dif-
ferent monads operator introduced by our specification language. This kind of rules has the following
form:

(σ |= outs← ioprog (ι#ιs);P s)

[ioprog ι σ = Some (oι, σ
′)

(σ′ |= outs← ioprog ιs;P (oι#s))

]
oι,σ′

···
Q

Q

(4.1)

EUROMILS D31.4 Page 57 of 438

D31.4 – Test-Generation Methods

Where σ is a symbolic variable that denote the state of a given system, outs is a sequence of outputs
resulting from the execution of the transition function ioprog, ι#ιs is a list of inputs and P is a post
condition on the sequence of outputs. A concrete example of generic symbolic execution rules is the
rule 1 presented in section 3.2. In order to catch the behavior of PikeOS, our specification language
was extended by a new state exception monad operator called abort__lift, an example of a generic
symbolic execution rule related to this operator is:

lemma abort_wait_send_mbindFSave_E:
assumes valid_exec:
(σ |=(outs ←(mbind ((IPC WAIT (SEND caller partner msg))#S)

(abort__lift ioprog));P outs))
and in_err_state:
caller ∈dom (act_info (th_flag σ)) =⇒
(σ |=(outs ←(mbind S (abort__lift ioprog));

P (get_caller_error caller σ# outs))) =⇒Q
(...)

and not_in_err_state_Some3:∧
σ’ error_IPC.
(caller /∈dom (act_info (th_flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ= Some(ERROR_IPC error_IPC, σ’) =⇒
((set_error_ipc_waitr caller partner σσ’ error_IPC msg) |=
(outs ←(mbind S(abort__lift ioprog));
P (ERROR_IPC error_IPC# outs))) =⇒Q

and not_in_err_state_None:
(caller /∈dom (act_info (th_flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ= None =⇒
(σ |=(P [])) =⇒Q

shows Q
proof (cases caller ∈dom (act_info (th_flag σ)))
(...)

In order to motivate the use of elimination rules for symbolic execution, we will explain the process of
their application on a given proof context. The use of the rule abort_wait_send_mbindFSave_E

on a given test specification Test_Scenario is conditioned by the existence of a given assumption
in Test_Scenario that have the same scheme of the assmuption valid_exec and the existence of
a conclusion. For the case of a valid test specification the conclusion will have the same scheme of
valid_exec, the only difference will be the FREE variable that represent the model? e. g. ioprog.
Actually, it is replaced by a variable, e. g. SUT, that represent the system under test. Once these con-
ditions are brought together for a given test specification Test_Scenario the application of the rule
will be performed using the tactic ematch_tac (see section 3.5 for further explanations). The process
of the application of rules , such as abort_wait_send_mbindFSave_E, on a valid representation of
Test_Scenario is:

1. Each time the input action (IPC WAIT (SEND caller partner msg)) is in the header of
a sequence of inputs ιs specified in a test specification Test_Scenario, a matching is estab-
lished between the assumption valid_exec and the assumption that specify a model of a tested
system in Test_Scenario, e. g. an assumption that specify a model for a test specification
Test_Scenario related to PikeOS can be σ |=(outs ←mbind is(abort__lift exec_action_Mon);return(outs

= x). The same thing will happen for the conclusion of the rule, which is by the way a free
variable Q that can be instantiated by any boolean formula, of course for the case of a valid test
specification the scheme of the conclusion specify a valid test execution for a system under test,
e. g. σ |=(outs ←mbind is SUT;return(outs = x).

2. After the establishment of the ematching, the proof statement provided by Test_Scenario is

EUROMILS D31.4 Page 58 of 438

D31.4 – Test-Generation Methods

transformed to a new proof statement. The latter will contain a set of proof goals, each goal has
is a "not matched" assumption specified in the rule, e. g. if Test_Scenario contain only an
assumption in the form of valid_exec then the new proof context, after the application of the
rule with ematching tactic, will contain the other assumptions of the rule like in_err_state and
not_in_err_state_Some3, etc.

3. We repeat the same process with different rules related to different input actions until we got an
empty input sequence. The resulting proof statement will receive a normalization process in order
to get abstract test cases for Test_Scenario.

A such process, actually based on ematching technic, has an enormous performance gain effect on sym-
bolic execution engine of Isabelle. Because, the whole calculation process is reduced technically to a
formal syntactic transformation of the proof context, instead of calculus based on substitution, rewriting,
instantiation, introduction, etc. From another side, the execution of a such process on a sequence of
inputs specified in a given test specification can be easily automated by an algorithm. The algorithm ba-
sically is represented by an Isabelle tactic, the latter takes the different symbolic execution rules related
to the different actions of the specified system and execute the rules on the proof context until no rules
can be applied. For instance, a tactic for symbolic execution related to the actions of PikeOS IPC is:

val abort_ipc_mbind_TestGen_PureE21_ematch =
(ALLGOALS o TestGen.REPEAT’) (CHANGED o TRY o FIRST’
[ematch_tac
[@{thm abort_prep_send_HOL_elim21},

5 @{thm abort_prep_recv_HOL_elim21},
@{thm abort_wait_send_HOL_elim21},
@{thm abort_wait_recv_HOL_elim21},
@{thm abort_buf_send_HOL_elim21},
@{thm abort_buf_recv_HOL_elim21},

10 @{thm abort_map_send_HOL_elim2},
@{thm abort_map_recv_HOL_elim2},
@{thm abort_done_send_HOL_elim1’},
@{thm abort_done_recv_HOL_elim1’}]]);

The tactic abort_ipc_mbind_testGen_PureE21_ematch is implemented on SML level using the
different Isabelle SML libraries, the elements of the tactic are:

• ALLGOALS: a tactic combinator of type tactic * tactic -> tactic from the module Tactical
of Isabelle/ML. It applies the tactic on all goals of a proof statement. A proof statement is usually
called a proof context.

• TestGen.REPEAT’: a tactic combinator of type (int -> tactic)-> int -> tactic. It is
an adaptation of REPEAT_ALL_NEW, from the module Tactical of Isabelle/ML for HOL-TESTGEN

and it is used to repeat the same tactic on a given subgoal.

• CHANGED: a tactic combinator of type tactic -> tactic. Its apply the tactic on a given goal,
and if it fails (i. e.the goal is not changed), an Isabelle fail error is raised.

• TRY: a tactic combinator of type tactic -> tactic. its apply the tactic on a given goal, and if
it fails, it let the goal unchanged.

• FIRST’: a tactic combinator of type (’a -> tactic)list -> ’a -> tactic. Tries a num-
ber of tactics, specified actually inside a list, on a given goal.

EUROMILS D31.4 Page 59 of 438

D31.4 – Test-Generation Methods

• @{thm _}: an antiquotation that refers to a given Isabelle theorem. Antiquotations are used as
links to the object specified using Isabelle’s specification constructs. The objects can be Isabelle
theorems, types, theories, etc. Each object has its own type of antiquotation, e. g. in order to
refer to a given Isabelle theory we use @{theory theory_name}, another antiquotation can be
@{context}, it is used to refer to a given local context(proof statement) of a proof. Antiquotations
are useful for many activities, e. g. they are useful in order to get formal links of the different
objects in a given document generated from Isabelle theories, which helps for instance in the
review of the document. Also they are useful for development, e. g. in the developement automated
tactics.

• abort_prep_send_HOL_elim21: is a symbolic execution rules related to PikeOS IPC model.

For more details on Isabelle tactic development we would refer to [Urb13]. Moreover note, for more
details on rules related to abort__lift see subsection 4.3.5.

The Specific Rules.

These rules are instantiations for the generic ones by a given operational semantics. For the case of
PikeOS system, its operational semantics is expressed by a transition function (presented in subsec-
tion 4.3.5) over 10 atomic actions which are:

1. PREP SEND/RECV: in this stage some checks related to PikeOS message descriptor, i. e. a file
containing informations about the communicating threads, are done.

2. WAIT SEND/RECV: The wait stage is mainly used for synchronisation.

3. BUF SEND/RECV : The stage BUF represent data transfer via memory copy.

4. MAP SEND/RECV : The stage MAP data transfer via memory mapping.

5. DONE SEND/RECV: The stage DONE used to finish the IPC communication between the threads.

As mentioned in the presvious section and in section 3.5, the role of the symbolic execution rule is to
update the proof context according to the execution semantics of the different atomic actions of the IPC
protocol. An example of a symbolic execution rule derived from the operational semantics of PikeOS
IPC is:

EUROMILS D31.4 Page 60 of 438

D31.4 – Test-Generation Methods

lemma abort_wait_send_HOL_elim21:
assumes
valid_exec:
(σ |=(outs ←(mbind ((IPC WAIT (SEND caller partner msg))#S)

(abort__lift exec_action__id_Mon)); P outs))
and in_err_exec:
caller ∈dom (act_info (th_flag σ)) =⇒
(σ |=(outs ←(mbind S(abort__lift exec_action__id_Mon));

P (get_caller_error caller σ# outs))) =⇒Q
and

not_in_err_exec1:
caller /∈dom (act_info (th_flag σ)) =⇒
IPC_send_comm_check_st__id caller partner σ=⇒
IPC_params_c4 caller partner =⇒
IPC_params_c5 partner σ=⇒
(σ(|current_thread := caller,

thread_list := update_th_waiting caller (thread_list σ),
error_codes := NO_ERRORS,
th_flag := th_flag σ|)
|=(outs ←(mbind S(abort__lift exec_action__id_Mon));

P (NO_ERRORS # outs))) =⇒Q
(...)
not_in_err_exec24:
caller /∈dom (act_info (th_flag σ)) =⇒
IPC_send_comm_check_st__id caller partner σ=⇒
IPC_params_c4 caller partner =⇒
¬IPC_params_c5 partner σ=⇒
∃th. (thread_list σ) caller = Some th =⇒
(σ(|current_thread := caller ,

thread_list := update_th_current caller (thread_list σ),
error_codes := ERROR_IPC error_IPC_5_in_WAITSEND,
th_flag := th_flag σ
(|act_info := act_info (th_flag σ)
(caller 7→(ERROR_IPC error_IPC_5_in_WAITSEND),
partner 7→(ERROR_IPC error_IPC_5_in_WAITSEND))|)|) |=
(outs ←(mbind S(abort__lift exec_action__id_Mon));

P (ERROR_IPC error_IPC_5_in_WAITSEND# outs)))=⇒Q
shows Q

Other Rules.

In order to simplify the proof of the symbolic execution rules presented earlier, other rules related to the
execution semantics of PikeOS were derived:

EUROMILS D31.4 Page 61 of 438

D31.4 – Test-Generation Methods

lemma abort_prep_send_obvious10’:
(σ |=(outs ←(mbind ((IPC PREP (SEND caller partner msg))#S)

(abort__lift exec_action__id_Mon)); P outs)) =
((caller ∈dom ((act_info o th_flag)σ) −→
(σ |=(outs ←(mbind S(abort__lift exec_action__id_Mon));

P (get_caller_error caller σ# outs)))) ∧
(caller /∈dom ((act_info o th_flag)σ) −→
(∀a b. (a = NO_ERRORS −→
exec_action_id_Mon (IPC PREP (SEND caller partner msg)) σ=
Some (NO_ERRORS, b) −→
(σ(|current_thread := caller,

thread_list := update_th_ready caller (thread_list σ),
error_codes := NO_ERRORS,
th_flag := th_flag σ|)|=
(outs ←(mbind S(abort__lift exec_action__id_Mon));

P (NO_ERRORS # outs)))) ∧
(∀error_memory. a = ERROR_MEM error_memory −→
exec_action__id_Mon (IPC PREP (SEND caller partner msg)) σ=
Some (ERROR_MEM error_memory, b) −→
(σ(|current_thread := caller,

thread_list := update_th_current caller (thread_list σ),
error_codes := ERROR_MEM error_memory,
th_flag :=
th_flag σ
(|act_info := ((act_info o th_flag)σ)
(caller 7→(ERROR_MEM error_memory),
partner 7→(ERROR_MEM error_memory))|)|)

(...)

Moreover, in order to optimize the process, some rules called behavioral refinement rules are derived:

lemma abort_prep_send_obvious0:
assumes not_in_err :

caller /∈dom (act_info (th_flag σ))
and ioprog_success:

ioprog (IPC PREP (SEND caller partner msg)) σ=
Some(NO_ERRORS, σ’)

shows abort__lift ioprog (IPC PREP (SEND caller partner msg)) σ=
Some(NO_ERRORS, (error_tab_transfer caller σσ’))

using assms
by simp

For more details on these rules we would refer to section 4.19.

4.5.4 Abstract Test Cases

Abstract test cases are proof goals resulting from the application of symbolic execution and the normal-
ization processes on a given test specification. Abstract test cases represent a possible execution path in
the system under test. In our approach, having n number of abstract test cases does not necessarily mean
that all n paths are feasible. An abstract test case is feasible if and only if there exist a model, i. e. an
instatiation of the free variables by a witness, that satisfy the premises of the abstract test case. In our
approach, the number of feasible test cases is always less than or equal to the number of abstract test

EUROMILS D31.4 Page 62 of 438

D31.4 – Test-Generation Methods

cases resulting from symbolic execution and normalization processes. The number of feasible abstract
test cases is not necessarily equal to the number of concrete tests. A concrete test is a witness used to
justify that a given abstract test case is feasible. Many witnesses can exist and used for the justification.
Actually, in some cases the number of witnesses can be infinite. Of course, if no witnesses can be derived
for an abstract test case this means that the abstract test case is infeasible. Thus, in our approach we can
clearly end with 0 concrete tests for a given test scenario and this can happen if the constraint-solver
can not provide a model that satisfies the proof obligations of the formula that represent an abstract test
case. The problems related to detecting feasible abstract test cases, and the elimination of infeasible ones
before the test generation, is not tackled during this thesis. An example of an abstract test case is:

∧
z za y.

(...) =
[e, f, g] =⇒
(...) =
[a, b, C] =⇒
IPC_send_comm_check_st__id thID2 thID1 σ_1 =⇒
IPC_params_c4 thID2 thID1 =⇒
IPC_params_c5 thID1 σ_1 =⇒
act_info (th_flag σ_1) thID2 = None =⇒
¬ IPC_buf_check_st__id thID2 thID1

(σ_1(|current_thread := thID2,
thread_list :=
if thID2 ∈dom (thread_list σ_1)
then thread_list σ_1(thID2 7→(the ◦thread_list σ_1) thID2

(|th_state := WAITING|))
else thread_list σ_1,

error_codes := NO_ERRORS|)) =⇒
thID1 6= thID2 =⇒
act_info (th_flag σ_1) thID1 = Some y =⇒
σ _1 |=
(outs ←mbind

[IPC WAIT (RECV thID1 thID2 [z, za]),
IPC WAIT (SEND thID2 thID1 [z, za]),
IPC BUF (SEND thID2 thID1 [z, za]),
IPC MAP (SEND thID2 thID1 [z, za]),
IPC DONE (SEND thID2 thID1 [z, za]),
IPC DONE (RECV thID1 thID2 [z, za])]
PUT2; unit_SE
(outs =
[y, NO_ERRORS,
ERROR_IPC error_IPC_1_in_BUFSEND,
ERROR_IPC error_IPC_1_in_BUFSEND,
ERROR_IPC error_IPC_1_in_BUFSEND,
ERROR_IPC error_IPC_1_in_BUFSEND]))

In order to get a concrete test case we have to instantiate this abstract test case with witnesses for the vari-
ables z, za, y. The instantiation process is done by sending the formula that contains the conjunction
of the premises, e. g. IPC_params_c4 thID2 thID1, to constraint-solvers via an interface provided
by HOL-TESTGEN. In our terminology, the conjunction between the premises of an abstract test case is
called Proof Obligation (PO).
Most of the time, a configuration is needed in order to help the constraint solver to reason about proof
obligations. The configuration of the constraint solver is basically done by a set of Isabelle lemmas that
help in the solving process of the PO. For technical reasons, the lemmas of the configuration must be
written in hol! language, and not in isar or pure language. For example in order to allow the constraint-

EUROMILS D31.4 Page 63 of 438

D31.4 – Test-Generation Methods

solver smt to reason about properties related to our abstract memory model, we use the rule:

lemma adde_share_charn [simp, code_unfold]:
assumes 1: ¬(i shares (σ) k’)
and 2: ¬(k shares (σ) k’)
shows i shares(σ(i’ onk’)) k = i shares (σ) k
using assms fun_upd_apply id_def mem_adde_E sharing_def sharing_refl
by metis

In its current form this rule will be refused by the solver smt. The following adaptation is needed:

lemma adde_share_charn_smt :
¬(i shares (σ) k’) ∧
¬(k shares (σ) k’) −→
i shares (σ(i’ onk’)) k = i shares (σ) k
using adde_share_charn
by simp

In our framework, and in order to feed the solver smt with the rule adde_share _charn_smt we use
the command:

declare adde_share_charn_smt [testgen_smt_facts]

We have to notice that we experienced several problems related to solving a PO containing constraints
around an abstract type,e. g. the type of our memory model. For example, in some cases the smt solver
fails to provide a solution to a PO containing a constraint of the form (i shares k), and this of course
because we do not have yet a perfect lemmas configuration that help the solver to reason about the
shares relation correctly.

4.5.5 Test Data For Sequence-based Test Scenarios

A test scenario is represented by a test specification and can have two main schemes: unit test or sequence
test. The specification TS_simple_example2 is an example of a sequence test scenario for PikeOS
IPC.

test_spec TS_simple_example2:
is ∈IPC_communication =⇒
σ 1 |=(outs ←mbind is(abort__lift exec_action_Mon);return(outs = x)

−→σ1 |=(outs ←mbind is SUT; return(outs = x))

For a σ 1 definition that contains a suitable VMIT configuration, possible generated values for is are,
e. g.:

[IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8])]

The sequence is an abstraction of an IPC communication between the thread with the ID = (0, 0, 1)
and the thread with ID = (0, 0, 2) via a message msg = [0, 4, 5, 8]. Natural numbers inside the mes-
sage are abstractions on memory addresses. In TS_simple_example2 the execution semantic of the

EUROMILS D31.4 Page 64 of 438

D31.4 – Test-Generation Methods

input sequence is represented by our execution function exec_action_Mon. We wrapped around our ex-
ecution function a monad transformer abortlift that express the behavior of an abort. The equality in
return(outs = x) specify our conformance relation between SUT outputs and the model outputs.
After using our symbolic execution process the out of this test case is:

[NO_ERRORS,
NO_ERRORS,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV]

The error-codes observed in the sequence is related to IPC. The error-codes was returned in the stage
WAIT_ RECV. The interpretation of this error-codes is that the thread has not the rights to communicate
with his partner. We can observe the behavior of our abort operator in this sequence of error-codes;
All stages following WAIT_RECV are purged (not executed), and the same error is returned instead. We
focus on error-codes in our scenarios, since error-codes represent a potential for undesired information
flow: for example, un-masked error-messages may reveal the structure of tasks and threads of a foreign
partition in the system; a revelation that the operating system as separation kernel should prevent.

4.5.6 Test Drivers

In this section we address the problem to compile "abstract test-drivers" as described in the previous
sections into concrete code and code instrumentations that actually execute these tests.
HOL-TestGen can generate test scripts in SML, Haskell, Scala and F#. For our application, we generate
SML test scripts and use MLton (www.mlton.org) for building the test executable: MLton 1. provides a
foreign function interface to C and 2. is easily portable to small POSIX system (it mainly requires a C
compiler, libc, and libm).1

In more detail, we generate two SML structures automatically from the Isabelle theories. The first
structure, called Datatypes, contains the datatypes that are used by the interface of the SUT. In
our example, this includes, e. g., IPC_protocol and P4_IPC_call. The second structure, called
TestScript, contains a list of all generated test cases as well the test oracle, i. e., the algorithms ne-
cessary to decide if a test result complies to the specification or not. In addition, HOL-TestGen provides
a test harness (as SML structure TestHarness) that 1. takes the list of test cases (from TestScript)
and executes them on the SUT, 2. uses the test oracle (also from TestScript) to decide if the actual
test results complies to the specification, and 3. provides statistics about the number of successful and
failed tests as well as errors (e. g., unexpected exceptions) during test execution.
In addition, for testing C code, we need to provide a small SML structure (ca. 20 lines of code), called
Adapter, that serves two purposes: 1. the configuration of the foreign function, e. g., the mapping from
SML datatypes to C datatypes and 2. the concretization of abstractions to bridge the gap between an
abstract test model and the concrete SUT.
An example for a concretization would be a test specification using an an enumeration to encode error
states while the implementation uses an efficient encoding as bit vector. The Adapter structure only
needs to be updated after significant changes to either the system specification or the system under test.
For testing concurrent, i. e., multi-threaded, programs we need to solve a particular challenge: enforcing
certain thread execution orders (a certain scheduling) during test execution. There are, in principle, three
different options available to control the scheduler during test execution: 1. instrumenting the SUT to
make the thread switching deterministic and controllable, 2. using a deterministic scheduler that can be
controlled by test driver, or 3. using the features of debuggers, such as the GNU debugger (gdb), for

1In our code generation setup, we avoid the use of the SML datatype Int.Inf and, by this, we can remove the dependency
on the GNU multi-precision library (libgmp).

EUROMILS D31.4 Page 65 of 438

www.mlton.org

D31.4 – Test-Generation Methods

multi-threaded programs.
In our prototype for POSIX compliant systems, we have chosen the third option: we execute the SUT
within a gdb session and we use the gdb to switch between the different threads in a controlled way.
We rely on two features of gdb (thus, out approach can be applied to any other debugger with similar
features), namely: 1. the possibility to attach to break points in the object code scripting code that is
executed if a break point is reached and 2. the complete control of the threading, i. e., gdb allows to
switch explicitly between threads while ensuring that only the currently active thread is executed (using
the option set scheduler-locking on).
This approach has the advantage that we neither need to modify the SUT nor do we need to develop a
custom scheduler. We only need to generate a configuration for controlling the debugger. The necessary
gdb command file is generated automatically by HOL-Testgen based on a mapping of the abstract thread
switching points to break points in the object code. The break points at the entry points allows us to
control the thread creation, while the remaining break points allow us to control the switching between
threads. Thus, we only need the SUT compiled in debugging mode and this mapping. In this sense, we
still have a “black-box” testing approach.
Moreover, Using gdb together with taskset, we ensure that all threads are executed on the same
core; in our application, we can accept that the actual execution in gdb changes the timing behavior.
Moreover, we assume a sequential memory model, so our approach does not cover TLB-related race
conditions occurring in multi-core CPU’s.

A note on testing small embedded systems and low-level operating system code. This setup works
well for mid-size embedded systems to large systems using standard desktop or server operating systems.
It does not work for small embedded systems or for testing small operating system kernels or hypervisors.
Such system often to neither provide a rich enough libc (or libm) nor enough system resources that
allows to run the complete test driver on the system under test. For such systems, we envision a host-
target setup, where only a very small target library needs to be ported to the target system. This target
library serves mainly two purposes: 1. stimulate, remotely controlled from the host system, the functions
under test and 2. collect the test result and report it back to the host system. All expensive computation
such as comparing test results, creating statistics are executed on the host system.
Finally, for small systems it might be necessary to develop a custom scheduler, e. g., similar to [MQB07],
to control the execution order of multi-threaded programs.

4.5.7 Experimental Results

In this section we will discuss our test experiences, the obtained results and the different problems en-
countered. The table Table 4.1 represent 52 different test specifications related to PikeOS IPC, i. e. test
scenarios for PikeOS IPC API, and also the statistics related to the application of the different steps of
our test generation process on these scenarios. Four columns are distinguished in Table 4.1:

1. SE: is the step related to the symbolic execution process. During this step the derived symbolic
execution rules related to PikeOS IPC are applied on the scenario.

2. Norm: represent the step of our normalization process. During this step we apply tactics like simp
and other derived rules from the model in order to eliminate contradictory proof goals resulting
from the SE step.

3. TT: is the step of the generation of the test theorem. During this step we use a HOL-TESTGEN

tactic to determine the PO and to introduce uniformity testing hypotheses on the different proof
goals resulting from the Norm step. This step can be seen as a preparatory step for the data
selection process.

2actually we designed 38 scenario, we did not finish all the experiments at submission time, further explanation are presented
in the sequel.

EUROMILS D31.4 Page 66 of 438

D31.4 – Test-Generation Methods

4. TD: represent the step of test data selection. During this step we send the POs in the test theorem
to constraint-solvers. Also, after that a given solver choose a model for the POs an Isabelle proof
is mandatory in order to make sure that the chosen model satisfies the PO. We have to notice
that, for simple models, the process of proving the satisfaction of the PO by the chosen model,
is done automatically by an Isabelle tactic but, for complicated models such as PikeOS model,
where its symbolic execution results with complicated predicated defined around abstract types,
e. g. predicate around our memory model, the proofs need to be done manually. This does not
mean that the process can not be automated, but at the moment, we do not have the set of lemmas
and the corresponding tactics that help to get a such automatic setup.

Each column in Table 4.1 is composed of two other columns. The columns named Num contain the
number of outputs from each step of the generation process, and the columns Time contain the duration
of the step by minutes. The scenarios Sc1 and Sc2 contain the value undet in their columns, it means that
we did not manage to finish the steps of the generation and the experience is done for these scenarios.
The judgement undet is different from the judgement represented by the symbol−, also contained in the
table. The judgement undet is applied to an experience where our process of test generation had failed
in a given step, and we are not trying to fix the failed part because, the fixes depends on major changes in
the various levels of the tool-chain. The judgement − is applied on an experience which is not finished
yet, i. e. we do not have the results of all the steps of the process but, finishing the experience depends
on manageable technical problems 3.
Note that the execution of the steps related to the test generation process is sequential. Thus, if the
current step fails the next one can not be executed. For example during the scenario Sc1, we had derived
actually 69984 symbolic test cases in 2 hours for 1 input sequence that represent an IPC communication
(recall subsection 4.5.1) but, we did not manage to normalize a such proof context with a such size,
which means that all remaining steps of the process can not be performed because they all depend of the
outputs from the Norm step.
As explained in subsection 4.5.4, the generation of 69984 symbolic test cases does not necessarily mean
that all the cases, represented by proof goals, are feasible. We have to normalize the proof goals in order
to eliminate the contradictory ones. Even if we have managed to normalize a proof context with a such
size, we still need to find models for the different normalized goals and prove that, the chosen models
satisfy the POs. While the fact of generating almost 70000 goals using our symbolic approach in only
2 hours can be seen as an impressive result, we have failed during the normalization process, and this
come back to:

1. The model. the model of PikeOS IPC is heavy, and this because of the branching in the atomic
actions, especially the PREP action.

2. The way of modeling. it is the main influential factor. We believe that some changes on the way of
modeling can help to make the normalization process lighter. e. g. the definition of meta-predicates
that characterize feasible paths only, or at least the elimination of the most of infeasible paths, and
accordingly, the definition of the corresponding symbolic execution rules, can actually result with
an optimized proof context after the SE step.

In order to execute our tool-chain from top to bottom we have tried other test scenarios to avoid the
previous cited problems. For example, the scenario Sc2 is similar to the scenario Sc1 but, without
including the PREP stage in the input sequence that represent 1 IPC communication. From Sc2, we had
derived 1973 symbolic test cases in 2 minutes (which is another impressive result). After 6 hours of
normalization process, 27 abstract test case remained. But still we did not manage to get automatically
models for the 27 abstract test cases, and this because of a failure from the constraint-solvers, such
smt, to provide a solution for complicated POs. The failure come back mainly to missing lemmas used

3At submission time of this document, we had managed to finish only 4 experiences.

EUROMILS D31.4 Page 67 of 438

D31.4 – Test-Generation Methods

as a configuration (recall last paragraphs in subsection 4.5.4) for the constraint solvers and not to the
constraints-solver design.
For the scenarios Sc3 to Sc5, we have tried another approach in order to deal with the previous cited
problems and also to generate test cases that cover communications with PREP action. Basically the
approach is based on a technique that, allows to force a given execution path from the possible ones,
resulting from the execution of the PREP action. Actually, after the execution of a PREP action, 6
execution paths are possible (see the symbolic execution rule for PREP action in section 4.22). Since
we have 2 PREP actions in the head of a sequence that represent 1 IPC communication, all possible
execution paths related to the 2 PREP actions is equal to 6× 6. Actually, the 2 PREP actions are derived
from: the ipc send system call for the PREP SEND action, and the ipc receive system call for PREP
RECV. Each system call is executed by a thread. Instead to opt for a standard execution of the 2 PREP
actions with rules that simulate all possible executions paths like we did in Sc1, we had opted for rules
that force one execution path inside a test scenario. In order to cover all paths, we had designed 36
scenarios, each scenario force a given execution path during the PREP stage. Because we do not have
any problems for executing the other actions which are different from PREP, we used the standard rules
for their symbolic execution.
In order to apply this new tchnique to our scenarios, new symbolic execution rules were designed to cope
with the explosion in the number of the abstract test cases, which influence negatively our normalization
process. For example, in the scenario Sc3 we had derived 2 new symbolic execution rules for PREP
actions. Each rule characterize one execution path by assuming that the path-predicate that describe the
execution path is true. The symbolic execution rules used to simulate the the behavior of the actions
PREP_SEND and PREP_RECV in the scenario Sc3 are:

lemma abort_prep_send_HOL_elim21’_factor:
assumes valid_exec:
(σ |=(outs ←(mbind ((IPC PREP (SEND caller partner msg))#S)

(abort__lift exec_action_id_Mon)); P outs))
and in_err_exec1:

caller ∈dom (act_info (th_flag σ))
and in_err_exec:

caller ∈dom (act_info (th_flag σ)) =⇒
(σ |=(outs ←(mbind S(abort__lift exec_action_id_Mon));

P (get_caller_error caller σ# outs))) =⇒Q

shows Q
apply (insert valid_exec)
apply (elim abort_prep_send_mbindFSave_E’)
apply (simp add: in_err_exec)
apply (simp add: in_err_exec1)+
done

EUROMILS D31.4 Page 68 of 438

D31.4 – Test-Generation Methods

lemma abort_prep_recv_HOL_elim21’_factor:
assumes valid_exec:
(σ |=(outs ←(mbind ((IPC PREP (RECV caller partner msg))#S)

(abort__lift exec_action_id_Mon)); P outs))
and in_err_exec1:
caller ∈dom (act_info (th_flag σ))
and in_err_exec:
caller ∈dom (act_info (th_flag σ)) =⇒

(σ |=(outs ←(mbind S(abort__lift exec_action_id_Mon));
P (get_caller_error caller σ# outs))) =⇒Q

shows Q
apply (insert valid_exec)
apply (elim abort_prep_recv_mbindFSave_E’)
apply (simp add: in_err_exec)
apply (simp add: in_err_exec1)+
done

Of course the path-predicate in_err_exec1 must be expressed also in the test specification Sc3. This
predicate express the fact that the caller of the action (the caller of PREP SEND and also the caller of
PREP RECV), was in an error-state (recall subsection 4.3.4).

Scenarios SE Norm TT TD
Num Time Num Time Num Time Num Time

Sc1 69984 120 undet undet undet undet undet undet

Sc2 1973 2 27 360 1 162 undet undet

Sc3 1973 2 2 0.01 1 120 2080 0.23
Sc4 1973 2 - - - - - -
Sc5 1973 2 - - - - - -

Table 4.1: Statistics for our TestGen Process

From another side, we did not manage to execute the generated tests on PikeOS sources, for confiden-
tiality reasons. In order to evaluate our approach we had implemented a PikeOS IPC-like environment
using POSIX implementation. We had managed to execute 2 scenarios on this PikeOS demonstrator.
Of course, when the state of the PikeOS demonstrator is initialised correctly our tests did not found any
bugs. If the state is not initialised correctly our generated tests detect the bugs. Finally, we still have
problems to define a program that initialise automatically the state of the demonstrate and bring it to the
same value generated by the model. At the moment this step is done manually, and this due to some
technical chanllenges like, how to export or import the values of a static array defined on C-level to
the sml-level. Finally, another technical challenge is that GDB can not run an executable containing a
Main.sml function defined in sml language. In order to deal with this problem, we have to define a
Main.c function on C-level and call our harness.sml inside the Main.c, and this using the foreign
function interface of MLton.
For the highest level the developer also needs to provide some formal representation of the high level
design. In addition to couverage also test depth needs to be analysed, which means that the possible
interactions between subsystems are to be sufficiently covered by tests. It could be an interesting to
extend the HOL-TestGen approach into this direction. Due to the lack of a formal representation of the
high level design (FSP), this could not be done in EURO-MILS.
In the EUROMILS SYSGO evaluated how to integrate generated test data into existing requirement
engineering and testing processes. The steps of the test sequences are at a granularity of preemption
points. This is a granularity that is smaller than interface-based test cases, which are targeting at function

EUROMILS D31.4 Page 69 of 438

D31.4 – Test-Generation Methods

invocations, but not at preemption points.

4.6 Conclusion

4.6.1 Related Work.

There is a wealth of approaches for tests of behavioral models; they differ in the underlying modeling
technique, the testability and test hypothesis’, the test conformance relation etc.; in section 3.2 we men-
tion a few. Unfortunately, many works make the underlying testability hypothesis’ not explicit which
makes a direct comparison difficult and somewhat vague. For the space of testability assumptions used
here (the system is input-output deterministic, is adequately modeled as underspecified deterministic
system, synchronous coupling between tester and SUT suffices), to the best of our knowledge, our ap-
proach is unique in its integrated process from theory, modeling, symbolic execution down to test-driver
generation.
With respect to the test-driver approach, this work undeniably owes a lot Microsoft’s CHESS pro-
ject [MQB07], which promoted the idea to actually control the scheduler of real systems and use partial-
order reduction techniques to test systematically concurrent executions for races in applications of real-
istic size (e. g., IE, Firefox, Apache). For our approach, controlling the scheduler is the key to justify the
presentation of the system as underspecified-deterministic transition function.

4.6.2 Conclusion and Future Work.

We see several conceptual and practical advantages of a monadic approach to sequence testing:
1. a monadic approach resists the tendency to surrender to finitism and constructivism at the first-best

opportunity; a tendency that is understandably wide-spread in model-checking communities,
2. it provides a sensible shift from syntax to semantics: instead of a first-order, intentional view in

nodes and events in automata, the heart of the calculus is on computations and their compositions,
3. the monadic theory models explicitly the difference between input and output, between data under

control of the tester and results under control of the SUT,
4. the theory lends itself for a theoretical and practical framework of numerous conformance notions,

even non-standard ones, and which gives
5. ways to new calculi of symbolic evaluation enabling symbolic states (via invariants) and input

events (via constraints) as well as a seamless, theoretically founded transition from system models
to test-drivers.

We see several directions for future work: On the model level, the formal theory of sequence testing (as
given in the HOL-TESTGEN library theories Monad.thy and TestRefinements.thy) providing
connections between monads, rules for test-driver optimization, different test refinements, etc., is worth
further development. On a test-theoretical level, our approach provides the basis for a comparison on
test-methods, in particular ones based on different testability hypothesis’.
Pragmatically, our test driver setup needs to be modified to be executable on the PikeOS system level.
For this end, we will need to develop a host-target setup (see subsection 4.5.6). Finally, we are interested
in extending our techniques to actually test information flow properties; since error-codes in applications
may reveal internal information of partitions (as, for example, the number of its tasks and threads), this
seems to be a rewarding target. For this purpose, not only action sequences need to be generated during
the constraint solving process, but also (abstract) VMITs.

EUROMILS D31.4 Page 70 of 438

D31.4 – Test-Generation Methods

Part IV

Annexes

EUROMILS D31.4 Page 71 of 438

HOL-TestGen 1.7.0-dev
(svn. rev. 11222:11225M)

User Guide
http://www.brucker.ch/projects/hol-testgen/

update authors
Achim D. Brucker
a.brucker@sheffield.ac.uk

The University of Sheffield, Sheffield, UK

Lukas Brügger
lukas.a.bruegger@gmail.com

ETH, Zürich, Switzerland

Matthias P. Krieger
Matthias.Krieger@lri.fr

LRI, Orsay, France

Burkhart Wolff
wolff@lri.fr

LRI, Orsay, France

February 4, 2016

Laboratoire en Recherche en Informatique (LRI)
Université Paris-Sud 11

91405 Orsay Cedex
France

Copyright c© 2003–2012 ETH Zurich, Switzerland
Copyright c© 2007–2015 Achim D. Brucker, Germany
Copyright c© 2008–2015 University Paris-Sud, France

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the Free Software Foundation.

Note:
This manual describes HOL-TestGen version 1.7.0-dev (svn. rev. 11222:11225M). The
manual of version 1.8.0 is also available as technical report number TR number to
be requested from the Laboratoire en Recherche en Informatique (LRI), Université
Paris-Sud 11, France.

Contents

1. Introduction 5

2. Preliminary Notes on Isabelle/HOL 7
2.1. Higher-order logic — HOL . 7
2.2. Isabelle . 7

3. Installation 9
3.1. Prerequisites . 9
3.2. Installing HOL-TestGen . 9
3.3. Starting HOL-TestGen . 10

4. Using HOL-TestGen 13
4.1. HOL-TestGen: An Overview . 13
4.2. Test Case and Test Data Generation . 13
4.3. Test Execution and Result Verification . 20

4.3.1. Testing an SML-Implementation 20
4.3.2. Testing Non-SML Implementations 22

4.4. Profiling Test Generation . 22

A. Glossary 25

3

1. Introduction

Today, essentially two validation techniques for software are used: software verification
and software testing . Whereas verification is rarely used in “real” software develop-
ment, testing is widely-used, but normally in an ad-hoc manner. Therefore, the attitude
towards testing has been predominantly negative in the formal methods community,
following what we call Dijkstra’s verdict [18, p.6]:

“Program testing can be used to show the presence of bugs, but never to
show their absence!”

More recently, three research areas, albeit driven by different motivations, converge and
result in a renewed interest in testing techniques:

Abstraction Techniques: model-checking raised interest in techniques to abstract infi-
nite to finite models. Provided that the abstraction has been proven sound, testing
may be sufficient for establishing correctness [9, 17].

Systematic Testing: the discussion over test adequacy criteria [25], i. e. criteria solving
the question “when did we test enough to meet a given test hypothesis,” led to
more systematic approaches for partitioning the space of possible test data and
the choice of representatives. New systematic testing methods and abstraction
techniques can be found in [21, 19].

Specification Animation: constructing counter-examples has raised interest also in the
theorem proving community, since combined with animations of evaluations, they
may help to find modeling errors early and to increase the overall productivity [8,
22, 16].

The first two areas are motivated by the question “are we building the program right?”
the latter is focused on the question “are we specifying the right program?” While
the first area shows that Dijkstra’s Verdict is no longer true under all circumstances,
the latter area shows, that it simply does not apply in practically important situations.
In particular, if a formal model of the environment of a software system (e. g. based
among others on the operation system, middleware or external libraries) must be reverse-
engineered, testing (“experimenting”) is without alternative (see [12]).

Following standard terminology [25], our approach is a specification-based unit test .
In general, a test procedure for such an approach can be divided into:

Test Case Generation: for each operation the pre/postcondition relation is divided into
sub-relations. It assumes that all members of a sub-relation lead to a similar
behavior of the implementation.

5

Test Data Generation: (also: Test Data Selection) for each test case (at least) one
representative is chosen so that coverage of all test cases is achieved. From the
resulting test data, test input data processable by the implementation is extracted.

Test Execution: the implementation is run with the selected test input data in order to
determine the test output data.

Test Result Verification: the pair of input/output data is checked against the specifi-
cation of the test case.

The development of HOL-TestGen [13] has been inspired by [20], which follows the line
of specification animation works. In contrast, we see our contribution in the development
of techniques mostly on the first and to a minor extent on the second phase.

Building on QuickCheck [16], the work presented in [20] performs essentially random
test, potentially improved by hand-programmed external test data generators. Never-
theless, this work also inspired the development of a random testing tool for Isabelle [8].
It is well-known that random test can be ineffective in many cases; in particular, if pre-
conditions of a program based on recursive predicates like “input tree must be balanced”
or “input must be a typable abstract syntax tree” rule out most of randomly generated
data. HOL-TestGen exploits these predicates and other specification data in order to
produce adequate data, combining automatic data splitting, automatic constraint solv-
ing, and manual deduction.

As a particular feature, the automated deduction-based process can log the underlying
test hypothesis made during the test; provided that the test hypothesis is valid for
the program and provided the program passes the test successfully, the program must
guarantee correctness with respect to the test specification, see [11, 14] for details.

6

2. Preliminary Notes on Isabelle/HOL

2.1. Higher-order logic — HOL

Higher-order logic(HOL) [15, 7] is a classical logic with equality enriched by total poly-
morphic1 higher-order functions. It is more expressive than first-order logic, since e. g.
induction schemes can be expressed inside the logic. Pragmatically, HOL can be viewed
as a combination of a typed functional programming language like Standard ML (SML)
or Haskell extended by logical quantifiers. Thus, it often allows a very natural way of
specification.

2.2. Isabelle

Isabelle [23, 1] is a generic theorem prover. New object logics can be introduced by
specifying their syntax and inference rules. Among other logics, Isabelle supports first
order logic (constructive and classical), Zermelo-Fränkel set theory and HOL, which we
chose as the basis for the development of HOL-TestGen.

Isabelle consists of a logical engine encapsulated in an abstract data type thm in
Standard ML; any thm object has been constructed by trusted elementary rules in
the kernel. Thus Isabelle supports user-programmable extensions in a logically safe
way. A number of generic proof procedures (tactics) have been developed; namely a
simplifier based on higher-order rewriting and proof-search procedures based on higher-
order resolution.

We use the possibility to build on top of the logical core engine own programs per-
forming symbolic computations over formulae in a logically safe (conservative) way: this
is what HOL-TestGen technically is.

1to be more specific: parametric polymorphism

7

3. Installation

3.1. Prerequisites

HOL-TestGen is built on top of Isabelle/HOL, version 2013-2, thus you need a working
installation of Isabelle 2013-2. To install Isabelle, follow the instructions on the Isabelle
web-site:

http://isabelle.in.tum.de/website-Isabelle2013-2/index.html

If you use the pre-compiled binaries from this website, please ensure that you install
both the Pure heap and HOL heap.

3.2. Installing HOL-TestGen

In the following we assume that you have a running Isabelle 2013-2 environment including
the jEdit based front-end. The installation of HOL-TestGen requires the following steps:

1. Unpack the HOL-TestGen distribution, e. g.:

tar zxvf hol-testgen-1.7.0-dev.tar.gz

This will create a directory hol-testgen-1.7.0-dev containing the HOL-TestGen
distribution.

2. Check the settings in the configuration file hol-testgen-1.7.0-dev/make.config.
If you can use the isabelle tool from Isabelle on the command line to start Isabelle
2013-2, the default settings should work. The ISABELLE variable in make.config

needs to point to the 2013-2 version of Isabelle. For this, it can be necessary to
configure an absolute path, e.g.,

ISABELLE=/usr/local/Isabelle2013-2/bin/isabelle

3. Change into the top directory

cd hol-testgen-1.7.0-dev

and build the HOL-TestGen heap image for Isabelle by calling

isabelle build -d . -b HOL-TestGen

9

Figure 3.1.: A HOL-TestGen session Using the jEdit Interface of Isabelle

3.3. Starting HOL-TestGen

HOL-TestGen can now be started using the isabelle command:1

cd <hol-testgen-home>examples/unit/List

<isabelle2013-2-home> jedit -d ../../.. -l HOL-TestGen List_test.thy

After a few seconds you should see an jEdit window similar to the one shown in Fig-
ure 3.1.

Alternatively, it is possible to compile many examples, for example the above List_test
without the -l HOL-TestGen option. This has the consequence that the HOL-TestGen
components (libraries, SML files, ...) are included in the session and can be run or

1If, during the installation of HOL-TestGen, a working HOLCF heap was found, then HOL-TestGen’s
logic is called HOLCF-TestGen; thus you need to replace HOL-TestGen by HOLCF-TestGen, e. g. the
interactive HOL-TestGen environment is started via isabelle jedit -l HOLCF-TestGen.

10

modified with the example together. This is particularly useful for debugging purposes.
However, the paths to theories in the theory imports must then be expanded to their
relative position.

Note that in some environments, jEdit is known to crash for unknown reasons when
called the first time (this is not an Isabelle error). Just restarting should resolve the
problem. In general, we strongly recommend to use the jEdit client as user-interface
(instead of Proof General).2 Use the system manual (see http://isabelle.in.tum.de/
website-Isabelle2013-2/dist/Isabelle2013-2/doc/system.pdf) as a high-level de-
scription of jEdit’s system options; another source of information is the built-in README-
facility inside the jEdit client.

2Still, in case you are using an non re-parenting window manager, you might want to stick to Proof
General as jEdit has some problems with such window managers.

11

4. Using HOL-TestGen

4.1. HOL-TestGen: An Overview

HOL-TestGen allows one to automate the interactive development of test cases, refine
them to concrete test data, and generate a test script that can be used for test execution
and test result verification. The test case generation and test data generation (selection)
is done in an Isar-based [24] environment (see Figure 4.1 for details). The test executable
(and the generated test script) can be built with any SML-system.

4.2. Test Case and Test Data Generation

In this section we give a brief overview of HOL-TestGen related extension of the Isar [24]
proof language. We use a presentation similar to the one in the Isar Reference Man-
ual [24], e. g. “missing” non-terminals of our syntax diagrams are defined in [24]. We
introduce the HOL-TestGen syntax by a (very small) running example: assume we want
to test a function that computes the maximum of two integers.

Starting your own theory for testing: For using HOL-TestGen you have to build your
Isabelle theories (i. e. test specifications) on top of the theory Testing instead of
Main. A sample theory is shown in Table 4.1.

Defining a test specification: Test specifications are defined similar to theorems in Is-
abelle, e. g.,

test spec ”prog a b = max a b”

would be the test specification for testing a simple program computing the max-
imum value of two integers. The syntax of the keyword test spec : theory →
proof (prove) is given by:

-- test_spec �� 〈locale〉 ��� 〈goal〉� 〈longgoal〉 ��� have� show �� hence �� thus �
� 〈goal〉 -�

〈goal〉 ::=-- �〈props〉� and �� -�

〈longgoal〉 ::=-- �� 〈thmdecl〉 ���� 〈contextelem〉 �� shows 〈goal〉 -�

13

test data

test cases

program under test

test harness

test script

test specification

(Test Result)
Test Trace

HOL-TestGen

Isabelle/HOL

SML-systemtest executable

Figure 4.1.: Overview of the system architecture of HOL-TestGen

theory max test
imports Testing
begin

test spec ”prog a b = max a b”
apply(gen test cases ”prog” simp: max def)
mk test suite ”max test”

gen test data ”max test”

thm max test.concrete tests

generate test script ”max test”
thm max test.test script

text {∗ Testing an SML implementation: ∗}
export code max test.test script in SML module name TestScript file ”impl/sml/max test script.sml”

text {∗ Finally , we export the raw test data in an XML−like format: ∗}
export test data ”impl/data/max data.dat” max test

end

Table 4.1.: A simple Testing Theory

14

Please look into the Isar Reference Manual [24] for the remaining details, e. g. a
description of 〈contextelem〉.

Generating symbolic test cases: Now, abstract test cases for our test specification can
(automatically) be generated, e. g. by issuing

apply(gen test cases ”prog” simp: max def)

The gen test cases : method tactic allows to control the test case generation in
a fine-granular manner:

-- gen_test_cases �� 〈depth〉 〈breadth〉 �� 〈progname〉 �� 〈clamsimpmod〉 ��-�
where 〈depth〉 is a natural number describing the depth of the generated test cases
and 〈breadth〉 is a natural number describing their breadth. Roughly speaking, the
〈depth〉 controls the term size in data separation lemmas in order to establish a
regularity hypothesis (see [11] for details), while the 〈breadth〉 controls the number
of variables occurring in the test specification for which regularity hypotheses are
generated. The default for 〈depth〉 and 〈breadth〉 is 3 resp. 1. 〈progname〉 denotes
the name of the program under test. Further, one can control the classifier and
simplifier sets used internally in the gen test cases tactic using the optional
〈clasimpmod〉 option:

〈clamsimpmod〉 ::=-- � simp � add� del �� only �
�

� � cong� split ���� add �� del �
� �

� iff ��� add ���� ? ��� del �
� �

� �� intro� elim �� dest �
�� !� �� ? �

�
� del �

� �

� : 〈thmrefs〉 -�

The generated test cases can be further processed, e. g., simplified using the usual
Isabelle/HOL tactics.

Creating a test suite: HOL-TestGen provides a kind of container, called test-suites,
which store all relevant logical and configuration information related to a par-
ticular test-scenario. Test-suites were initially created after generating the test
cases (and test hypotheses); you should store your result of the derivation, usually
the test-theorem which is the output of the test-generation phase, in a test suite
by:

mk test suite ”max test”

15

for further processing. This is done using the mk test suite : proof (prove) →
proof (prove) | theory command which also closes the actual “proof state” (or test
state. Its syntax is given by:

-- mk_test_suite 〈name〉 -�

where 〈name〉 is a fresh identifier which is later used to refer to this test state. This
name is even used at the very end of the test driver generation phase, when test-
executions are performed (externally to HOL-TestGen in a shell). Isabelle/HOL
can access the corresponding test theorem using the identifier 〈name〉.test thm,
e. g.:

thm max test.test thm

Generating test data: In a next step, the test cases can be refined to concrete test data:

gen test data ”max test”

The gen test data : theory |proof → theory |proof command takes only one pa-
rameter, the name of the test suite for which the test data should be generated:

-- gen_test_data 〈name〉 -�

After the successful execution of this command Isabelle can access the test hypoth-
esis using the identifier 〈name〉.test hyps and the test data using the identifier
〈name〉.test data

thm max test.test hyps
thm max test.concrete test

In our concrete example, we get the output:

THYP ((∃ x xa. x ≤xa ∧prog x xa = xa) −→ (∀ x xa. x ≤xa −→ prog x xa = xa))
THYP ((∃ x xa. ¬x ≤xa ∧ prog x xa = x) −→ (∀ x xa. ¬ x ≤xa −→ prog x xa = x))

as well as :

prog −9 −3 = −3
prog −5 −8 = −5

By default, generating test data is done by calling the random solver. This is
fine for such a simple example, but as explained in the introduction, this is far
incomplete when the involved data-structures become more complex. To handle
them, HOL-TestGen also comes with a more advanced data generator based on
SMT solvers (using their integration in Isabelle, see e. g. [10]).

To turn on SMT-based data generation, use the following option:

declare [[testgen SMT]]

(which is thus set to false by default). It is also recommenced to turn off the
random solver:

16

declare [[testgen iterations =0]]

In order for the SMT solver to know about constant definitions and properties, one
needs to feed it with these definitions and lemmas. For instance, if the test case
involves some inductive function foo, you can provide its definition to the solver
using:

declare foo.simps [testgen smt facts]

as well as related properties (if needed).

A complete description of the configuration options can be found below.

Exporting test data: After the test data generation, HOL-TestGen is able to export the
test data into an external file, e. g.:

export test data ”test max.dat” ”max test”

exports the generated test data into a file text max.dat. The generation of a
test data file is done using the export test data : theory |proof → theory |proof
command:

-- export_test_data 〈filename〉 〈name〉 �� 〈smlprogname〉 �� -�

where 〈filename〉 is the name of the file in which the test data is stored and 〈name〉
is the name of a collection of test data in the test environment.

Generating test scripts: After the test data generation, HOL-TestGen is able to gener-
ate a test script, e. g.:

gen test script ”test max.sml” ”max test” ”prog”
”myMax.max”

produces the test script shown in Table 4.2 that (together with the provided test
harness) can be used to test real implementations. The generation of test scripts
is done using the generate test script : theory |proof → theory |proof command:

-- gen_test_script 〈filename〉 〈name〉 〈progname〉 �� 〈smlprogname〉 �� -�

where 〈filename〉 is the name of the file in which the test script is stored, and
〈name〉 is the name of a collection of test data in the test environment, and
〈progname〉 the name of the program under test. The optional parameter 〈smlprogname〉
allows for the configuration of different names of the program under test that is
used within the test script for calling the implementation.

Alternatively, the code-generator can be configured to generate test-driver code in
other progamming languages, see below.

Configure HOL-TestGen: The overall behavior of test data and test script generation
can be configured, e. g.

17

structure TestDriver : sig end = struct

val return = ref ~63;

3 fun eval x2 x1 = let

val ret = myMax.max x2 x1

in

((return := ret);ret)

end

8 fun retval () = SOME(! return);

fun toString a = Int.toString a;

val testres = [];

val pre_0 = [];

13 val post_0 = fn () => ((eval ~23 69 = 69));

val res_0 = TestHarness.check retval pre_0 post_0;

val testres = testres@[res_0];

val pre_1 = [];

18 val post_1 = fn () => ((eval ~11 ~15 = ~11));

val res_1 = TestHarness.check retval pre_1 post_1;

val testres = testres@[res_1];

val _ = TestHarness.printList toString testres;

23 end

Table 4.2.: Test Script

18

declare [[testgen iterations =15]]

The parameters (all prefixed with testgen) have the following meaning:

depth: Test-case generation depth. Default: 3.

breadth: Test-case generation breadth. Default: 1.

bound: Global bound for data statements. Default: 200.

case breadth: Number of test data per case, weakening uniformity. Default:
1.

iterations: Number of attempts during random solving phase. Default:
25. Set to 0 to turn off the random solver.

gen prelude: Generate datatype specific prelude. Default: true.

gen wrapper: Generate wrapper/logging-facility (increases verbosity of the
generated test script). Default: true.

SMT: If set to “true” external SMT solvers (e.g., Z3) are used during
test-case generation. Default: false.

smt facts: Add a theorem to the SMT-based data generator basis.

toString: Type-specific SML-function for converting literals into strings
(e.g., Int.toString), used for generating verbose output while
executing the generated test script. Default: "".

setup code: Customized setup/initialization code (copied verbatim to gen-
erated test script). Default: "".

dataconv code: Customized code for converting datatypes (copied verbatim
to generated test script). Default: "".

type range bound: Bound for choosing type instantiation (effectively used ele-
ments type grounding list). Default: 1.

type candidates: List of types that are used, during test script generation, for
instantiating type variables (e.g., α list). The ordering of the
types determines their likelihood of being used for instantiat-
ing a polymorphic type. Default: [int, unit, bool, int set, int
list]

Configuring the test data generation: Further, an attribute test : attribute is provided,
i. e.:

lemma max abscase [test ”maxtest”]:”max 4 7 = 7”

or

declare max abscase [test ”maxtest”]

that can be used for hierarchical test case generation:

-- test 〈name〉 -�

19

structure myMax = struct

fun max x y = if (x < y) then y else x

end

Table 4.3.: Implementation in SML of max

4.3. Test Execution and Result Verification

In principle, any SML-system, e. g. [5, 4, 6, 2, 3], should be able to run the provided
test-harness and generated test-script. Using their specific facilities for calling foreign
code, testing of non-SML programs is possible. For example, one could test

• implementations using the .Net platform (more specific: CLR IL), e. g. written in
C# using sml.net [6],

• implementations written in C using, e. g. the foreign language interface of sm-
l/NJ [5] or MLton [3],

• implementations written in Java using mlj [2].

Also, depending on the SML-system, the test execution can be done within an interpreter
(it is even possible to execute the test script within HOL-TestGen) or using a compiled
test executable. In this section, we will demonstrate the test of SML programs (using
SML/NJ or MLton) and ANSI C programs.

4.3.1. Testing an SML-Implementation

Assume we have written a max-function in SML (see Table 4.3) stored in the file max.sml
and we want to test it using the test script generated by HOL-TestGen. Following
Figure 4.1 we have to build a test executable based on our implementation, the generic
test harness (harness.sml) provided by HOL-TestGen, and the generated test script
(test max.sml), shown in Table 4.2.

If we want to run our test interactively in the shell provided by sml/NJ, we just have
to issue the following commands:

use "harness.sml";

use "max.sml";

use "test_max.sml";

After the last command, sml/NJ will automatically execute our test and you will see a
output similar to the one shown in Table 4.4.

If we prefer to use the compilation manager of sml/NJ, or compile our test to a single
test executable using MLton, we just write a (simple) file for the compilation manager of
sml/NJ (which is understood both, by MLton and sml/NJ) with the following content:

20

Test Results:

=============

Test 0 - SUCCESS, result: 69

Test 1 - SUCCESS, result: ~11

Summary:

Number successful tests cases: 2 of 2 (ca. 100%)

Number of warnings: 0 of 2 (ca. 0%)

Number of errors: 0 of 2 (ca. 0%)

Number of failures: 0 of 2 (ca. 0%)

Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success

===============

Table 4.4.: Test Trace

Group is

harness.sml

max.sml

test_max.sml

#if(defined(SMLNJ_VERSION))

$/basis.cm

$smlnj/compiler/compiler.cm

#else

#endif

and store it as test.cm. We have two options, we can

• use sml/NJ: we can start the sml/NJ interpreter and just enter

CM.make("test.cm")

which will build a test setup and run our test.

• use MLton to compile a single test executable by executing

mlton test.cm

on the system shell. This will result in a test executable called test which can be
directly executed.

In both cases, we will get a test output (test trace) similar to the one presented in
Table 4.4.

21

int max (int x, int y) {

2 if (x < y) {

return y;

}else{

return x;

}

7 }

Table 4.5.: Implementation in ANSI C of max

4.3.2. Testing Non-SML Implementations

Suppose we have an ANSI C implementation of max (see Table 4.5) that we want to test
using the foreign language interface provided by MLton. First we have to import the
max method written in C using the _import keyword of MLton. Further, we provide a
“wrapper” function doing the pairing of the curried arguments:

structure myMax = struct

val cmax = _import "max": int * int -> int ;

fun max a b = cmax(a,b);

end

We store this file as max.sml and write a small configuration file for the compilation
manager:

Group is

harness.sml

max.sml

test_max.sml

We can compile a test executable by the command

mlton -default-ann ’allowFFI true’ test.cm max.c

on the system shell. Again, we end up with an test executable test which can be called
directly. Running our test executable will result in trace similar to the one presented in
Table 4.4.

4.4. Profiling Test Generation

HOL-TestGen includes support for profiling the test procedure. By default, profiling is
turned off. Profiling can be turned on by issuing the command

-- profiling_on -�

Profiling can be turned off again with the command

-- profiling_off -�

22

When profiling is turned on, the time consumed by gen test cases and gen test data
is recorded and associated with the test theorem. The profiling results can be printed
by

-- print_clocks -�

A LaTeX version of the profiling results can be written to a file with the command

-- write_clocks 〈filename〉 -�

Users can also record the runtime of their own code. A time measurement can be
started by issuing

-- start_clock 〈name〉 -�

where 〈name〉 is a name for identifying the time measured. The time measurement is
completed by

-- stop_clock 〈name〉 -�

where 〈name〉 has to be the name used for the preceding start clock. If the names do
not match, the profiling results are marked as erroneous. If several measurements are
performed using the same name, the times measured are added. The command

-- next_clock -�

proceeds to a new time measurement using a variant of the last name used.
These profiling instructions can be nested, which causes the names used to be com-

bined to a path. The Clocks structure provides the tactic analogues start clock tac,
stop clock tac and next clock tac to these commands. The profiling features
available to the user are independent of HOL-TestGen’s profiling flag controlled by pro-
filing on and profiling off.

23

A. Glossary

Abstract test data : In contrast to pure ground terms over constants (like integers
1, 2, 3, or lists over them, or strings ...) abstract test data contain arbitrary predi-
cate symbols (like triangle 3 4 5).

Regression testing: Repeating of tests after addition/bug fixes have been introduced
into the code and checking that behavior of unchanged portions has not changed.

Stub: Stubs are “simulated” implementations of functions, they are used to simulate
functionality that does not yet exist ore cannot be run in the test environment.

Test case: An abstract test stimuli that tests some aspects of the implementation and
validates the result.

Test case generation: For each operation the pre/postcondition relation is divided into
sub-relations. It assumes that all members of a sub-relation lead to a similar
behavior of the implementation.

Test data: One or more representative for a given test case.

Test data generation (Test data selection): For each test case (at least) one repre-
sentative is chosen so that coverage of all test cases is achieved. From the resulting
test data, test input data processable by the implementation is extracted.

Test execution: The implementation is run with the selected test input data in order
to determine the test output data.

Test executable: An executable program that consists of a test harness, the test script
and the program under test. The Test executable executes the test and writes a
test trace documenting the events and the outcome of the test.

Test harness: When doing unit testing the program under test is not a runnable program
in itself. The test harness or test driver is a main program that initiates test calls
(controlled by the test script), i. e. drives the method under test and constitutes a
test executable together with the test script and the program under test.

Test hypothesis : The hypothesis underlying a test that makes a successful test equiva-
lent to the validity of the tested property, the test specification. The current imple-
mentation of HOL-TestGen only supports uniformity and regularity hypotheses,
which are generated “on-the-fly” according to certain parameters given by the user
like depth and breadth.

25

Test specification : The property the program under test is required to have.

Test result verification: The pair of input/output data is checked against the specifica-
tion of the test case.

Test script: The test program containing the control logic that drives the test using
the test harness. HOL-TestGen can automatically generate the test script for you
based on the generated test data.

Test theorem: The test data together with the test hypothesis will imply the test speci-
fication. HOL-TestGen conservatively computes a theorem of this form that relates
testing explicitly with verification.

Test trace: Output made by a test executable.

26

Bibliography

[1] Isabelle. URL http://isabelle.in.tum.de.

[2] MLj. URL http://www.dcs.ed.ac.uk/home/mlj/index.html.

[3] MLton. URL http://www.mlton.org/.

[4] Poly/ML. URL http://www.polyml.org/.

[5] SML of New Jersey. URL http://www.smlnj.org/.

[6] sml.net. URL http://www.cl.cam.ac.uk/Research/TSG/SMLNET/.

[7] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof . Computer Science and Applied Mathematics. Academic
Press, Orlando, May 1986. ISBN 0120585367.

[8] Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In Software
Engineering and Formal Methods (SEFM), pages 230–239. ieee Computer Society,
Los Alamitos, ca, usa, 2004. ISBN 0-7695-2222-X.

[9] A. Biere, A. Cimatti, Edmund Clarke, Ofer Strichman, and Y. Zhu. Bounded Model
Checking . Number 58 in Advances In Computers. 2003.

[10] Sascha Böhme and Tjark Weber. Fast lcf-style proof reconstruction for Z3. In
Matt Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Prov-
ing, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6172 of Lecture Notes in Computer Science, pages 179–194.
Springer, 2010. ISBN 978-3-642-14051-8. URL http://dx.doi.org/10.1007/

978-3-642-14052-5_14.

[11] Achim D. Brucker and Burkhart Wolff. Symbolic test case generation for prim-
itive recursive functions. In Jens Grabowski and Brian Nielsen, editors, Formal
Approaches to Testing of Software, number 3395 in Lecture Notes in Computer Sci-
ence, pages 16–32. Springer-Verlag, Heidelberg, 2004. ISBN 3-540-25109-X. URL
http://www.brucker.ch/bibliography/abstract/brucker.ea-symbolic-2005.

[12] Achim D. Brucker and Burkhart Wolff. A verification approach for applied system
security. International Journal on Software Tools for Technology (STTT), 7(3):233–
247, 2005. ISSN 1433-2779. URL http://www.brucker.ch/bibliography/

abstract/brucker.ea-verification-2005.

27

[13] Achim D. Brucker and Burkhart Wolff. HOL-TestGen: An interactive test-case gen-
eration framework. In Marsha Chechik and Martin Wirsing, editors, Fundamental
Approaches to Software Engineering (FASE09), number 5503 in Lecture Notes in
Computer Science, pages 417–420. Springer-Verlag, Heidelberg, 2009. URL http:

//www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009.

[14] Achim D. Brucker and Burkhart Wolff. On theorem prover-based testing. Formal
Aspects of Computing , 25(5):683–721, 2013. ISSN 0934-5043. URL http://www.

brucker.ch/bibliography/abstract/brucker.ea-theorem-prover-2012.

[15] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2):56–68, June 1940.

[16] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the the fifth ACM SIGPLAN international
conference on Functional programming , pages 268–279. acm Press, New York, ny
usa, 2000. ISBN 1-58113-202-6.

[17] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252. acm Press, New York, ny usa, 1977.

[18] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming , volume 8
of A.P.I.C. Studies in Data Processing . Academic Press, London, 3rd edition, 1972.
ISBN 0-12-200550-3.

[19] Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test
cases from model-based specifications. In J.C.P. Woodcock and P.G. Larsen, editors,
Formal Methods Europe 93: Industrial-Strength Formal Methods, volume 670 of
Lecture Notes in Computer Science, pages 268–284. Springer-Verlag, Heidelberg,
April 1993.

[20] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Verifying haskell programs by
combining testing and proving. In Proceedings of the Third International Confer-
ence on Quality Software, page 272. IEEE Computer Society, 2003. ISBN 0-7695-
2015-4. URL http://csdl.computer.org/comp/proceedings/qsic/2003/2015/

00/20150272abs.htm.

[21] Marie Claude Gaudel. Testing can be formal, too. In Peter D. Mosses, Mogens
Nielsen, and Michael I. Schwartzbach, editors, tapsoft’95: Theory and Practice of
Software Development , number 915 in Lecture Notes in Computer Science, pages
82–96. Springer-Verlag, Heidelberg, 1995. ISBN 3-540-59293-8.

[22] Susumu Hayashi. Towards the animation of proofs—testing proofs by examples.
Theoretical Computer Science, 272(1–2):177–195, 2002.

28

[23] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/hol—A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Heidelberg, 2002.

[24] Markus Wenzel. The Isabelle/Isar Reference Manual . TU München, München,
2004. URL http://isabelle.in.tum.de/dist/Isabelle2004/doc/isar-ref.

pdf.

[25] Hong Zhu, Patrick A.V. Hall, and John H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4):366–427, December 1997. ISSN 0360-
0300. URL http://www.cs.bris.ac.uk/Tools/Reports/Abstracts/1997-zhu.

html.

29

Index

abstract test data, 25

breadth, 25
〈breadth〉, 15

〈clasimpmod〉, 15

data separation lemma, 15
depth, 25
〈depth〉, 15

export test data (command), 17

gen test cases (method), 15
gen test data (command), 16
generate test script (command), 17

higher-order logic, see HOL
HOL, 7

Isabelle, 6, 7, 9

Main (theory), 13
mk test suite (command), 16

〈name〉, 16

program under test, 15, 17

random solver, 16
regression testing, 25
regularity hypothesis, 15

SML, 7
software

testing, 5
validation, 5
verification, 5

Standard ML, see SML
stub, 25

test, 6
test (attribute), 19
test specification, 13
test theorem, 16
test case, 13
test data generation, 13
test executable, 13
test specification, 6
test case, 6, 25
test case generation, 5, 13, 15, 19, 25
test data, 6, 13, 16, 25
test data generation, 6, 25
test data selection, see test data genera-

tion
test driver , see test harness
test executable, 20, 22, 25
test execution, 6, 13, 20, 25
test harness, 17, 25
test hypothesis, 6, 25
test procedure, 5
test result verification, 13
test result verification, 6, 26
test script, 13, 17, 18, 20, 26
test specification, 15, 26
test theorem, 26
test theory, 14
test trace, 21, 26
test spec (command), 13
Testing (theory), 13

unit test
specification-based, 5

31

D31.4 – Test-Generation Methods

theory TypeSchemes
imports Main

begin

4.7 HOL representation of PikeOS Datatypes

4.7.1 kernel state
record (′resource, ′thread-id, ′thread, ′sp-th-th, ′sp-th-res, ′errors) kstate =
resource :: ′resource — system ressources: memory, files..
current-thread :: ′thread-id — a thread in the execution context..
thread-list :: ′thread — list of threads in the system.
communication-rights :: ′sp-th-th — security policy between threads..
access-rights :: ′sp-th-res — security policy between threads and ressources..
error-codes :: ′errors — error returned if a system call is aborted..

4.7.2 atomic actions

Atomic actions can be seen as instructions which can not be interrupted by the system scheduler during
there execution. Each API has its own set of atomic actions.

datatype (′ipc-stage, ′ipc-direction) actionipc =
IPC ′ipc-stage ′ipc-direction

datatype (′mem-param1, ′mem-param2) actionmem =
MEM ′mem-param1 ′mem-param2

datatype (′evn-param1, ′evn-param2) actionevn =
EVN ′evn-param1 ′evn-param2

datatype (′ipc-stage, ′ipc-direction, ′mem-param1, ′mem-param2, ′evn-param1, ′evn-param2) action =
atomipc (′ipc-stage, ′ipc-direction) actionipc
| atommem (′mem-param1, ′mem-param2) actionmem

| atomevn (′evn-param1, ′evn-param2) actionevn

4.7.3 traces

A trace is sequence of atomic actions..

— An IPC actions trace

type-synonym (′ipc-stage, ′ipc-direction) traceipc =
(′ipc-stage, ′ipc-direction) actionipc list

— A memory actions IPC trace

type-synonym (′mem-param1, ′mem-param2) tracemem =
(′mem-param1, ′mem-param2) actionmem list

— An event actions trace

type-synonym (′evn-param1, ′evn-param2) traceevn =
(′evn-param1, ′evn-param2) actionevn list

— A trace that contain all atomic actions

type-synonym (′ipc-stage, ′ipc-direction, ′mem-param1, ′mem-param2, ′evn-param1, ′evn-param2) trace =
(′ipc-stage, ′ipc-direction, ′mem-param1, ′mem-param2, ′evn-param1, ′evn-param2) action list

EUROMILS D31.4 Page 103 of 438

D31.4 – Test-Generation Methods

4.7.4 Threads

A thread is the smallest entity in the operating system.

record (′th-id, ′thstate, ′stipc, ′vadress, ′cpartner) thread =
thread-id :: ′th-id
th-state :: ′thstate
th-ipc-st :: ′stipc
own-vmem-adr :: ′vadress
cpartner :: ′cpartner

end

4.8 A Shared-Memory-Model

theory SharedMemory
imports Main
begin

4.9 Shared Memory Model

4.9.1 Prerequisites

Prerequisite: a generalization of fun-upd-def : ?f (?a := ?b)≡ λx. if x = ?a then ?b else ?f x. It represents
updating modulo a sharing equivalence, i.e. an equivalence relation on parts of the domain of a memory.

definition fun-upd-equivp :: (′a⇒ ′a⇒ bool)⇒ (′a⇒ ′b)⇒ ′a⇒ ′b⇒ (′a⇒ ′b) where
fun-upd-equivp eq f a b = (λx. if eq x a then b else f x)

— This lemma is the same as Fun.fun-upd-same: (?f (?x := ?y)) ?x = ?y; applied on our genralization fun-upd-equivp
?eq ?f ?a ?b = (λx. if ?eq x ?a then ?b else ?f x) of ?f (?a := ?b) ≡ λx. if x = ?a then ?b else ?f x. This proof tell
if our function fun-upd-equivp op = f x y is equal to f this is equivalent to the fact that f x = y

lemma fun-upd-equivp-iff : ((fun-upd-equivp (op =) f x y) = f) = (f x = y)
by (simp add :fun-upd-equivp-def , safe, erule subst, auto)

— Now we try to proof the same lemma applied on any equivalent relation equivp eqv instead of the equivalent
relation op =. For this case, we had split the lemma to 2 parts. the lemma fun-upd-equivp-iff-part1 to proof the case
when eq (f a) b−→ eq (fun-upd-equivp eqv f a b z) (f z), and the second part is the lemma fun-upd-equivp-iff-part2
to proof the case equivp eqv =⇒ fun-upd-equivp eqv f a b = f −→ f a = b.

lemma fun-upd-equivp-iff-part1:
equivp R =⇒ (

∧
z. R x z =⇒ R (f z) y) =⇒ R (fun-upd-equivp R f x y z) (f z)

by (auto simp: fun-upd-equivp-def Equiv-Relations.equivp-reflp Equiv-Relations.equivp-symp)

lemma fun-upd-equivp-iff-part2: equivp R =⇒ fun-upd-equivp R f x y = f −→ f x = y
apply (simp add :fun-upd-equivp-def , safe)
apply (erule subst, auto simp: Equiv-Relations.equivp-reflp)

done

— Just anotther way to formalise equivp ?R =⇒ fun-upd-equivp ?R ?f ?x ?y = ?f −→ ?f ?x = ?y without using
the strong equality

lemma equivp R =⇒ (
∧

z. R x z =⇒ R (fun-upd-equivp R f x y z) (f z)) =⇒ R y (f x)
by (simp add: fun-upd-equivp-def Equiv-Relations.equivp-symp equivp-reflp)

EUROMILS D31.4 Page 104 of 438

D31.4 – Test-Generation Methods

— this lemma is the same in Jequivp ?R;
∧

z. ?R ?x z =⇒ ?R (?f z) ?yK =⇒ ?R (fun-upd-equivp ?R ?f ?x ?y ?z)
(?f ?z) where op = is generalized by another equivalence relation

lemma fun-upd-equivp-idem: f x = y =⇒ (fun-upd-equivp (op =) f x y) = f
by (simp only: fun-upd-equivp-iff)

lemma fun-upd-equivp-triv : fun-upd-equivp (op =) f x (f x) = f
by (simp only: fun-upd-equivp-iff)

— This is the generalization of fun-upd-equivp op = ?f ?x (?f ?x) = ?f on a given equivalence relation

lemma fun-upd-equivp-triv-part1 :
equivp R =⇒ (

∧
z. R x z =⇒fun-upd-equivp (R ′) f x (f x) z) =⇒ f x

apply (auto simp:fun-upd-equivp-def)
apply (metis equivp-reflp)

done

lemma fun-upd-equivp-triv-part2 :
equivp R =⇒ (

∧
z. R x z =⇒ f z) =⇒ fun-upd-equivp (R ′) f x (f x) x

by (simp add:fun-upd-equivp-def equivp-reflp split: split-if)

lemma fun-upd-equivp-apply [simp]:
(fun-upd-equivp (op =) f x y) z = (if z = x then y else f z)
by (simp only: fun-upd-equivp-def)

— This is the generalization of fun-upd-equivp op = ?f ?x ?y ?z = (if ?z = ?x then ?y else ?f ?z) with e given
equivalence relation and not only with op =

lemma fun-upd-equivp-apply1 [simp]:
equivp R =⇒(fun-upd-equivp R f x y) z = (if R z x then y else f z)
by (simp add: fun-upd-equivp-def)

lemma fun-upd-equivp-same: (fun-upd-equivp (op =) f x y) x = y
by (simp only: fun-upd-equivp-def)simp

— This is the generalization of fun-upd-equivp op = ?f ?x ?y ?x = ?y with a given equivalence relation

lemma fun-upd-equivp-same1: equivp R =⇒ (fun-upd-equivp R f x y) x = y
by (simp add: fun-upd-equivp-def equivp-reflp)

For the special case that @term eq is just the equality @term "op =", sharing update and classical update
are identical.

lemma fun-upd-equivp-vs-fun-upd: (fun-upd-equivp (op =)) = fun-upd
by(rule ext, rule ext, rule ext,simp add:fun-upd-def fun-upd-equivp-def)

4.9.2 Definition of the shared-memory type
typedef (′α, ′β) memory = {(σ:: ′α ⇀ ′β, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
proof

show (Map.empty, (op =)) ∈ ?memory
by (auto simp: identity-equivp)

qed

fun memory-inv :: (′a⇒ ′b option) × (′a⇒ ′a⇒ bool)⇒ bool
where memory-inv (Pair f R) = (equivp R ∧ (∀ x y. R x y −→ f x = f y))

lemma Abs-Rep-memory [simp]:Abs-memory (Rep-memory σ) = σ
by (simp add:Rep-memory-inverse)

EUROMILS D31.4 Page 105 of 438

D31.4 – Test-Generation Methods

lemma memory-invariant [simp]:
memory-inv σ-rep = (Rep-memory (Abs-memory σ-rep) = σ-rep)

using Rep-memory [of Abs-memory σ-rep] Abs-memory-inverse mem-Collect-eq
prod-caseE prod-caseI2 memory-inv.simps

by smt

lemma Pair-code-eq :
Rep-memory σ = Pair (fst (Rep-memory σ)) (snd (Rep-memory σ))
by (simp add: Product-Type.surjective-pairing)

lemma snd-memory-equivp [simp]: equivp(snd(Rep-memory σ))
by(insert Rep-memory[of σ], auto)

4.9.3 Operations on Shared-Memory
definition init :: (′α, ′β) memory
where init = Abs-memory (Map.empty, op =)

definition init-mem-list :: ′α list⇒ (nat, ′α) memory
where init-mem-list s = Abs-memory (let h = zip (map nat [0 .. int(length s)]) s

in foldl (λx (y,z). fun-upd x y (Some z))
Map.empty h,

op =)

— Some execution examples for memory construction
value init::(nat,int)memory
value init-mem-list [−22,2,−3]
value map (λx. the (fst (Rep-memory init)x)) [1 .. 10]
value take (10) (map (Pair Map.empty) [(op =)])
value replicate 10 init
term Rep-memory σ
term [(σ::nat ⇀ int, R)<−xs . equivp R ∧ (∀ x y. R x y −→ σ x = σ y)]

Memory Read Operation

definition lookup :: (′α, ′β) memory⇒ ′α⇒ ′β (infixl $ 100)
where σ $ x = the (fst (Rep-memory σ) x)

setup-lifting type-definition-memory

Memory Update Operation

fun Pair-upd-lifter:: (′a⇒ ′b option) × (′a⇒ ′a⇒ bool)⇒ ′a⇒ ′b⇒
(′a⇒ ′b option) × (′a⇒ ′a⇒ bool)

where Pair-upd-lifter (Pair f R) x y = (fun-upd-equivp R f x (Some y), R)

lemma update-sound ′:
assumes σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
shows Pair-upd-lifter σ x y ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}

proof −
obtain mem and R

where Pair: (mem, R) = σ and Eq: equivp R and Mem: ∀ x y . R x y −→ mem x = mem y
using assms equivpE by auto

obtain mem ′ and R ′

where Pair ′: (mem ′, R ′) = Pair-upd-lifter σ x y
using surjective-pairing by metis

EUROMILS D31.4 Page 106 of 438

D31.4 – Test-Generation Methods

have Def1: mem ′ = fun-upd-equivp R mem x (Some y)
and Def2: R ′ = R

using Pair Pair ′ by auto
have Eq ′: equivp R ′

using Def2 Eq by auto
moreover have ∀ y z . R ′ y z −→ mem ′ y = mem ′ z

using Mem equivp-symp equivp-transp
unfolding Def1 Def2 by (metis Eq fun-upd-equivp-def)

ultimately show ?thesis
using Pair ′ by auto

qed

lift-definition update :: (′a, ′b) memory⇒ ′a⇒ ′b⇒ (′a, ′b) memory (- ′(- :=$ - ′) 100)
is Pair-upd-lifter
using update-sound ′

by simp

lemma update ′: σ (x :=$ y) = Abs-memory (fun-upd-equivp (snd (Rep-memory σ))
(fst (Rep-memory σ)) x (Some y), (snd (Rep-memory σ)))

using Rep-memory-inverse surjective-pairing Pair-upd-lifter.simps update.rep-eq
by metis

fun update-list-rep :: (nat ⇀ ′b) × (nat⇒ nat⇒ bool)⇒ (nat × ′b)list⇒
(nat ⇀ ′b) × (nat⇒ nat⇒ bool)

where
update-list-rep (f , R) nlist =
(foldl (λ(f , R) (addr,val). Pair-upd-lifter (f , R) addr val) (f , R) nlist)

lemma update-list-rep-p:
assumes 1: P σ
and 2:

∧
src dst σ. P σ =⇒ P (Pair-upd-lifter σ src dst)

shows P (update-list-rep σ list)
using 1 2
apply (induct list arbitrary: σ)
apply force
apply safe
apply (simp del: Pair-upd-lifter.simps)
using surjective-pairing
apply metis

done

lemma update-list-rep-sound:
assumes 1: σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
shows update-list-rep σ (nlist) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
using 1
apply (elim update-list-rep-p)
apply (erule update-sound ′)

done

lift-definition update-list :: (nat, ′α) memory⇒ (nat × ′α)list⇒ (nat, ′α) memory
is update-list-rep
using update-list-rep-sound by simp

Type-invariant:

lemma update-sound:
assumes Rep-memory σ = (σ ′, eq)

EUROMILS D31.4 Page 107 of 438

D31.4 – Test-Generation Methods

shows (fun-upd-equivp eq σ ′ x (Some y), eq) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
using assms insert Rep-memory[of σ]
apply(auto simp: fun-upd-equivp-def)
apply(rename-tac xa xb, erule contrapos-np)
apply(rule-tac R=eq and y=xa in equivp-transp,simp)
apply(erule equivp-symp, simp-all)
apply(rename-tac xa xb, erule contrapos-np)
apply(rule-tac R=eq and y=xb in equivp-transp,simp-all)

done

Memory Transfer Based on Sharing Transformation

fun transfer-rep ::
(′a ⇀ ′b) × (′a⇒ ′a⇒ bool)⇒ ′a⇒ ′a⇒ (′a ⇀ ′b) × (′a⇒ ′a⇒ bool)

where transfer-rep (m, r) src dst =
(m o (id (dst := src)), (λ x y . r ((id (dst := src)) x) ((id (dst := src)) y)))

lemma transfer-rep-sound:
assumes σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
shows transfer-rep σ src dst ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}

proof −
obtain mem and R

where P: (mem, R) = σ and E: equivp R and M: ∀ x y . R x y −→ mem x = mem y
using assms equivpE by auto

obtain mem ′ and R ′

where P ′: (mem ′, R ′) = transfer-rep σ src dst
by (metis surj-pair)

have D1: mem ′ = (mem o (id (dst := src)))
and D2: R ′ = (λ x y . R ((id (dst := src)) x) ((id (dst := src)) y))
using P P ′ by auto

have equivp R ′

using E unfolding D2 equivp-def by metis
moreover have ∀ y z . R ′ y z −→ mem ′ y = mem ′ z

using M unfolding D1 D2 by auto
ultimately show ?thesis

using P ′ by auto
qed

lift-definition
adde :: (′a, ′b)memory⇒ ′a⇒ ′a ⇒ (′a, ′b)memory (- ′(- on - ′) [0,111,111]110)
is transfer-rep
using transfer-rep-sound
by simp

fun share-list-rep :: (′a ⇀ ′b) × (′a⇒ ′a⇒ bool)⇒ (′a × ′a)list⇒
(′a ⇀ ′b) × (′a⇒ ′a⇒ bool)

where
share-list-rep (f , R) nlist =
(foldl (λ(f , R) (src,dst). transfer-rep (f , R) src dst) (f , R) nlist)

fun share-list-rep ′ :: (′a ⇀ ′b) × (′a⇒ ′a⇒ bool)⇒ (′a × ′a)list⇒
(′a ⇀ ′b) × (′a⇒ ′a⇒ bool)

where
share-list-rep ′ (f , R) [] = (f , R)

EUROMILS D31.4 Page 108 of 438

D31.4 – Test-Generation Methods

| share-list-rep ′ (f , R) (n#nlist) =
share-list-rep ′ (transfer-rep (f , R) (fst n) (snd n)) nlist

lemma share-list-rep ′-p:
assumes 1: P σ
and 2:

∧
src dst σ. P σ =⇒ P (transfer-rep σ src dst)

shows P (share-list-rep ′ σ list)
using 1 2
apply (induct list arbitrary: σ P)
apply force
apply safe
apply (simp del: transfer-rep.simps)
using surjective-pairing
apply metis

done

lemma foldl-preserve-p:
assumes 1: P mem
and 2:

∧
y z mem . P mem =⇒ P (f mem y z)

shows P (foldl (λa (y, z). f mem y z) mem list)
using 1 2
apply (induct list arbitrary: f mem , auto)
apply metis

done

lemma share-list-rep-p:
assumes 1: P σ
and 2:

∧
src dst σ. P σ =⇒ P (transfer-rep σ src dst)

shows P (share-list-rep σ list)
using 1 2
apply (induct list arbitrary: σ)
apply force
apply safe
apply (simp del: transfer-rep.simps)
using surjective-pairing
apply metis

done

lemma share-list-rep-sound:
assumes 1: σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
shows share-list-rep σ (nlist) ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
using 1
apply (elim share-list-rep-p)
apply (erule transfer-rep-sound)

done

lift-definition init-share-list :: (nat, ′α) memory⇒ (nat × nat)list⇒ (nat, ′α) memory
is share-list-rep
using share-list-rep-sound by simp

definition update-buff :: (′α, ′β) memory⇒ ′α set⇒ ′β set⇒ (′α, ′β)memory
where update-buff σ X Y =

(let (mem, eq) = Rep-memory σ
in Abs-memory (fun-upd-equivp eq mem (SOME x. x∈X) (Some(SOME y. y ∈Y)), eq))

EUROMILS D31.4 Page 109 of 438

D31.4 – Test-Generation Methods

definition reset :: (′α, ′β) memory⇒ ′α set⇒ (′α, ′β)memory (- ′(reset - ′) 100)
where σ (reset X) = (let (σ ′,eq) = Rep-memory σ;

eq ′ = λ a b. eq a b ∨ (∃ x∈X. eq a x ∨ eq b x)
in if X={} then σ

else Abs-memory (fun-upd-equivp eq ′ σ ′ (SOME x. x∈X) None, eq))

The modification of the underlying equivalence relation on adresses is only defined on very strong con-
ditions — which are fulfilled for the empty memory, but difficult to establish on a non-empty-one. And
of course, the given relation must be proven to be an equivalence relation. So, the case is geared towards
shared-memory scenarios where the sharing is defined initially once and for all.

definition updateR :: (′α, ′β)memory⇒ (′α⇒ ′α⇒ bool)⇒ (′α, ′β)memory (- :=R - 100)
where σ :=R R ≡ Abs-memory (fst(Rep-memory σ), R)

definition lookupR :: (′α, ′β)memory⇒ (′α⇒ ′α⇒ bool) ($R - 100)
where $R σ ≡ (snd(Rep-memory σ))

lemma updateR-comp-lookupR:
assumes equiv : equivp R

and sharing-conform : ∀ x y. R x y −→ fst(Rep-memory σ) x = fst(Rep-memory σ) y
shows ($R (σ :=R R)) = R
unfolding lookupR-def updateR-def
by(subst Abs-memory-inverse, simp-all add: equiv sharing-conform)

4.9.4 Sharing Relation Definition
definition sharing :: ′a⇒ (′a, ′b)memory⇒ ′a⇒ bool

((- shares()-/ -) [201, 0, 201] 200)
where (x sharesσ y) ≡ (snd(Rep-memory σ) x y)

definition Sharing :: ′a set⇒ (′a, ′b)memory⇒ ′a set⇒ bool
((- Shares()-/ -) [201, 0, 201] 200)

where (X Sharesσ Y) ≡ (∃ x∈X. ∃ y∈Y. x sharesσ y)

4.9.5 Properties on Sharing Relation
lemma sharing-charn[code-unfold]:
(x sharesσ y) =⇒ equivp (snd (Rep-memory σ))
using Rep-memory[of σ]
unfolding sharing-def
by auto

lemma sharing-charn1[code-unfold]:
equivp (snd (Rep-memory σ))
using Rep-memory[of σ]
unfolding sharing-def
by auto

lemma sharing-charn ′[simp, code-unfold]:
assumes 1: (x sharesσ y)
shows (∃R. equivp R ∧ R x y)
by (auto simp add: sharing-def snd-def equivp-def)

lemma sharing-charn2 [simp, code-unfold]:
shows∃ x y. (equivp (snd (Rep-memory σ)) ∧ (snd (Rep-memory σ)) x y)
using sharing-charn1 [THEN equivp-reflp]
by (simp)fast

EUROMILS D31.4 Page 110 of 438

D31.4 – Test-Generation Methods

lemma sharing-charn5 [simp, code-unfold]:
assumes 1: i 6= k
shows ¬(i sharesinit k)
unfolding sharing-def init-def
using 1
by (auto simp: Abs-memory-inverse identity-equivp)

lemma sharing-charn6 [simp, code-unfold]:
assumes 1: i 6= k
shows ¬(i sharesinit-mem-list S k)
unfolding sharing-def init-mem-list-def
using 1
by (auto simp: Abs-memory-inverse identity-equivp)

— Lemma to show that ?x shares?σ ?y ≡ snd (Rep-memory ?σ) ?x ?y is reflexive
lemma sharing-refl [simp]: (x sharesσ x)
using insert Rep-memory[of σ]
by (auto simp: sharing-def elim: equivp-reflp)

— Lemma to show that ?x shares?σ ?y ≡ snd (Rep-memory ?σ) ?x ?y is symetric
lemma sharing-sym [sym]:

assumes x sharesσ y
shows y sharesσ x
using assms Rep-memory[of σ]
by (auto simp: sharing-def elim: equivp-symp)

lemma sharing-commute : x sharesσ y = (y sharesσ x)
by(auto intro: sharing-sym)

— Lemma to show that ?x shares?σ ?y ≡ snd (Rep-memory ?σ) ?x ?y is transitive

lemma sharing-trans [trans]:
assumes x sharesσ y
and y sharesσ z
shows x sharesσ z
using assms insert Rep-memory[of σ]
by(auto simp: sharing-def elim: equivp-transp)

lemma shares-result:
assumes x sharesσ y
shows fst (Rep-memory σ) x = fst (Rep-memory σ) y
using assms
unfolding sharing-def
using Rep-memory[of σ]
by auto

4.9.6 Memory Domain Definition
definition Domain :: (′α, ′β)memory⇒ ′α set
where Domain σ = dom (fst (Rep-memory σ))

4.9.7 Properties on Memory Domain
lemma Domain-charn:

assumes 1:x ∈ Domain σ

EUROMILS D31.4 Page 111 of 438

D31.4 – Test-Generation Methods

shows ∃ y. Some y = fst (Rep-memory σ) x
using 1
by(auto simp: Domain-def)

— This lemma says that if x and y are quivalent this means that they are in the same set of equivalent classes

lemma shares-dom [code-unfold, intro]:
assumes x sharesσ y
shows (x ∈ Domain σ) = (y ∈ Domain σ)
using insert Rep-memory[of σ] assms
by (auto simp: sharing-def Domain-def)

lemma Domain-mono:
assumes 1: x ∈ Domain σ
and 2: (x sharesσ y)
shows y ∈ Domain σ
using 1 2 Rep-memory[of σ]
by (auto simp add: sharing-def Domain-def)

4.9.8 Sharing Relation and Memory Update
lemma sharing-upd: x shares(σ(a :=$ b)) y = x sharesσ y
using insert Rep-memory[of σ]
by(auto simp: sharing-def update-def Abs-memory-inverse[OF update-sound])

— this lemma says that if we do an update on an adress x all the elements that are equivalent of x are updated

lemma update ′′:
σ (x :=$ y) = Abs-memory(fun-upd-equivp (λx y. x sharesσ y) (fst (Rep-memory σ)) x (Some y),

snd (Rep-memory σ))
unfolding update-def sharing-def
by (metis update ′ update-def)

theorem update-cancel:
assumes x sharesσ x ′

shows σ(x :=$ y)(x ′ :=$ z) = (σ(x ′ :=$ z))
proof −

have ∗ : (fun-upd-equivp(snd(Rep-memory σ))(fst(Rep-memory σ)) x (Some y),snd (Rep-memory σ))
∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}

unfolding fun-upd-equivp-def
by(rule update-sound[simplified fun-upd-equivp-def], simp)

have ∗∗ :
∧

R σ. equivp R =⇒ R x x ′ =⇒
fun-upd-equivp R (fun-upd-equivp R σ x (Some y)) x ′ (Some z)
= fun-upd-equivp R σ x ′ (Some z)

unfolding fun-upd-equivp-def
apply(rule ext)
apply(case-tac R xa x ′, auto)
apply(erule contrapos-np, erule equivp-transp, simp-all)
done

show ?thesis
apply(simp add: update ′)
apply(insert sharing-charn[OF assms] assms[simplified sharing-def])
apply(simp add: Abs-memory-inverse [OF ∗] ∗∗)
done

qed

EUROMILS D31.4 Page 112 of 438

D31.4 – Test-Generation Methods

theorem update-commute:
assumes 1:¬ (x sharesσ x ′)
shows (σ(x :=$ y))(x ′ :=$ z) = (σ(x ′:=$ z)(x :=$ y))

proof −
have ∗ :

∧
x y.(fun-upd-equivp(snd(Rep-memory σ))(fst(Rep-memory σ)) x (Some y),snd (Rep-memory σ))
∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}

unfolding fun-upd-equivp-def
by(rule update-sound[simplified fun-upd-equivp-def], simp)

have ∗∗ :
∧

R σ. equivp R =⇒¬ R x x ′ =⇒
fun-upd-equivp R (fun-upd-equivp R σ x (Some y)) x ′ (Some z) =
fun-upd-equivp R (fun-upd-equivp R σ x ′ (Some z)) x (Some y)

unfolding fun-upd-equivp-def
apply(rule ext)
apply(case-tac R xa x ′, auto)
apply(erule contrapos-np)
apply(frule equivp-transp, simp-all)
apply(erule equivp-symp, simp-all)
done

show ?thesis
apply(simp add: update ′)
apply(insert assms[simplified sharing-def])
apply(simp add: Abs-memory-inverse [OF ∗] ∗∗)

done
qed

4.9.9 Properties on lookup and update wrt the Sharing Relation
lemma update-triv:
assumes 1: x sharesσ y

and 2: y ∈ Domain σ
shows σ (x :=$ (σ $ y)) = σ

proof −
{

fix z
assume zx: z sharesσ x
then have zy: z sharesσ y

using 1 by (rule sharing-trans)
have F: y ∈ Domain σ =⇒ x sharesσ y

=⇒ Some (the (fst (Rep-memory σ) x)) = fst (Rep-memory σ) y
by(auto simp: Domain-def dest: shares-result)

have Some (the (fst (Rep-memory σ) y)) = fst (Rep-memory σ) z
using zx and shares-result [OF zy] shares-result [OF zx]
using F [OF 2 1]
by simp

} note 3 = this
show ?thesis

unfolding update ′′ lookup-def fun-upd-equivp-def
by (simp add: 3 Rep-memory-inverse if-cong)

qed

lemma update-idem :
assumes 1: x sharesσ y
and 2: x ∈ Domain σ
and 3: σ $ x = z
shows σ(x:=$ z) = σ

proof −
have ∗ : y ∈ Domain σ by(simp add: shares-dom[OF 1, symmetric] 2)

EUROMILS D31.4 Page 113 of 438

D31.4 – Test-Generation Methods

have σ (x :=$ (σ $ y)) = σ
using 1 2 ∗ by (simp add: update-triv)

also have (σ $ y) = σ $ x
by (simp only: lookup-def shares-result [OF 1])

also note 3
finally show ?thesis .

qed

lemma update-apply: (σ(x :=$ y)) $ z = (if z sharesσ x then y else σ $ z)
proof −

have ∗: (λz. if z sharesσ x then Some y else fst (Rep-memory σ) z, snd (Rep-memory σ))
∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
unfolding sharing-def
by(rule update-sound[simplified fun-upd-equivp-def], simp)

show ?thesis
proof (cases z sharesσ x)

case True
assume A: z sharesσ x
show σ (x :=$ y) $ z = (if z sharesσ x then y else σ $ z)

unfolding update ′′ lookup-def fun-upd-equivp-def
by(simp add: Abs-memory-inverse [OF ∗])

next
case False

assume A: ¬ z sharesσ x
show σ (x :=$ y) $ z = (if z sharesσ x then y else σ $ z)

unfolding update ′′ lookup-def fun-upd-equivp-def
by(simp add: Abs-memory-inverse [OF ∗])

qed
qed

lemma update-share:
assumes z sharesσ x
shows σ(x :=$ a) $ z = a
using assms
by (simp only: update-apply if-True)

lemma update-other:
assumes ¬(z sharesσ x)
shows σ(x :=$ a) $ z = σ $ z
using assms
by (simp only: update-apply if-False)

lemma lookup-update-rep:
assumes 1: (snd (Rep-memory σ ′)) x y
shows (fst (Pair-upd-lifter (Rep-memory σ ′) src dst)) x =

(fst (Pair-upd-lifter (Rep-memory σ ′) src dst)) y
using 1 shares-result sharing-def sharing-upd update.rep-eq
by (metis (hide-lams, no-types))

lemma lookup-update-rep ′′:
assumes 1: x sharesσ y
shows (σ (src :=$ dst)) $ x = (σ (src :=$ dst)) $ y
using 1 lookup-def lookup-update-rep sharing-def update.rep-eq
by metis

4.9.10 Symbolic Execution rules on Memory Update
lemma mem-update-E:

EUROMILS D31.4 Page 114 of 438

D31.4 – Test-Generation Methods

assumes 1: σ = Rep-memory(update σ ′ x y)
and 2: σ = Pair-upd-lifter (Rep-memory σ ′) x y =⇒

equivp (snd σ) =⇒ snd σ = (snd(Rep-memory σ ′)) =⇒ Q
shows Q
using 1
unfolding update.rep-eq
using Rep-memory [of (update σ ′ x y)] sharing-charn2 1 2 Pair-upd-lifter.elims snd-conv
by (metis (hide-lams, no-types))

lemma Pair-upd-lifter-E:
assumes 1: σ = Pair-upd-lifter (Rep-memory σ ′) x y
and 2: σ = ((λz. if (snd(Rep-memory σ ′)) z x then Some y else ((fst(Rep-memory σ ′))) z),

(snd(Rep-memory σ ′))) =⇒ Q
shows Q

proof −
obtain f and R

where sig: (f , R) = σ and
f : fst σ = f and
R : snd σ = R

using surjective-pairing[of σ] by force
have obvf1: fst σ = fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y)

using 1 surjective-pairing[of (Rep-memory σ ′)] Pair-upd-lifter.simps fst-conv
by metis

have obvf2: f = fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y)
using f obvf1 by simp

have obvR1: snd σ = (snd(Rep-memory σ ′))
using 1 surjective-pairing[of (Rep-memory σ ′)] Pair-upd-lifter.simps snd-conv
by metis

have obvR2: R = (snd(Rep-memory σ ′))
using R obvR1 by simp

have obvfR: (f , R) = (fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y),
(snd(Rep-memory σ ′)))

using obvf2 obvR2 by simp
have obvsig: σ = (fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y),

(snd(Rep-memory σ ′)))
using sig obvfR by simp

show ?thesis
using obvsig
unfolding fun-upd-equivp-def
by (elim 2)

qed

lemma Pair-upd-lifter-rep:
Pair-upd-lifter (Rep-memory σ ′) x y =
(fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y), (snd(Rep-memory σ ′)))

using surjective-pairing[of (Rep-memory σ ′)] Pair-upd-lifter.simps
by metis

lemma Pair-upd-lifter-fst:
assumes 1: σ = Pair-upd-lifter (Rep-memory σ ′) x y
shows fst σ = (λz. if (snd(Rep-memory σ ′)) z x then Some y else ((fst(Rep-memory σ ′))) z)

proof −
have obv1: fst σ =

fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y)
using 1 unfolding Pair-upd-lifter-rep by simp

also have obv2: fun-upd-equivp (snd(Rep-memory σ ′)) (fst(Rep-memory σ ′)) x (Some y) =
(λz. if (snd(Rep-memory σ ′)) z x then Some y else ((fst(Rep-memory σ ′))) z)

unfolding fun-upd-equivp-def by simp

EUROMILS D31.4 Page 115 of 438

D31.4 – Test-Generation Methods

ultimately show ?thesis
by simp

qed

lemma Pair-upd-lifter-fst1:
assumes 1: σ = Pair-upd-lifter (Rep-memory σ ′) x y
shows (snd(Rep-memory σ ′)) z x =⇒ fst σ z = Some y
using 1 unfolding Pair-upd-lifter-rep
by simp

lemma Pair-upd-lifter-fst2:
assumes 1: σ = Pair-upd-lifter (Rep-memory σ ′) x y
shows ¬(snd(Rep-memory σ ′)) z x =⇒ fst σ z = (fst(Rep-memory σ ′)) z
using 1 unfolding Pair-upd-lifter-rep
by simp

lemma Pair-upd-lifter-snd:
assumes 1: σ = Pair-upd-lifter (Rep-memory σ ′) x y
shows snd σ = (snd(Rep-memory σ ′))
using 1 unfolding Pair-upd-lifter-rep
by simp

lemma Pair-upd-lifter-E ′:
assumes 1: σ = Pair-upd-lifter (Rep-memory σ ′) x y
and 2:

∧
z. (snd(Rep-memory σ ′)) z x =⇒

fst (Pair-upd-lifter (Rep-memory σ ′) x y) z = Some y =⇒ Q
and 3:

∧
z. ¬(snd(Rep-memory σ ′)) z x =⇒ fst (Pair-upd-lifter (Rep-memory σ ′) x y) z =
(fst(Rep-memory σ ′)) z =⇒ Q

shows Q
using assms Pair-upd-lifter-fst1 Pair-upd-lifter-fst2
unfolding Pair-upd-lifter-rep
by force

lemma mem-update-E ′:
assumes 1: σ = Rep-memory(update σ ′ x y)
and 2:

∧
z. (snd(Rep-memory σ ′)) z x =⇒ fst (Rep-memory(update σ ′ x y)) z = Some y =⇒

equivp (snd σ) =⇒ snd (Rep-memory(update σ ′ x y)) = (snd(Rep-memory σ ′)) =⇒ Q
and 3:

∧
z. ¬(snd(Rep-memory σ ′)) z x =⇒

fst (Rep-memory(update σ ′ x y)) z = (fst(Rep-memory σ ′)) z =⇒
equivp (snd σ) =⇒ snd (Rep-memory(update σ ′ x y)) = (snd(Rep-memory σ ′)) =⇒ Q

shows Q
using assms mem-update-E Pair-upd-lifter-fst1 Pair-upd-lifter-fst2 update.rep-eq
by metis

lemma mem-update-E ′′:
assumes 1: σ = Rep-memory(update σ ′ x y)
and 2:

∧
z. z sharesσ ′ x =⇒ fst (Rep-memory(update σ ′ x y)) z = Some y =⇒

equivp (snd (Rep-memory(update σ ′ x y))) =⇒
snd (Rep-memory(update σ ′ x y)) = (snd(Rep-memory σ ′)) =⇒ Q

and 3:
∧

z. ¬(z sharesσ ′ x) =⇒
fst (Rep-memory(update σ ′ x y)) z = (fst(Rep-memory σ ′)) z =⇒
equivp (snd (Rep-memory(update σ ′ x y))) =⇒
snd (Rep-memory(update σ ′ x y)) = (snd(Rep-memory σ ′)) =⇒ Q

shows Q
using assms
unfolding sharing-def

EUROMILS D31.4 Page 116 of 438

D31.4 – Test-Generation Methods

by (elim mem-update-E ′, simp-all)

lemma mem-update-lookup-E:
assumes 1: σ = Rep-memory(update σ ′ x y)
and 2:

∧
z. z sharesσ ′ x =⇒ (σ ′ (x :=$ y)) $ z = y =⇒

equivp (snd (Rep-memory(update σ ′ x y))) =⇒
(x shares(update σ ′ x y) z) = (x sharesσ ′ z) =⇒ Q

and 3:
∧

z. ¬(z sharesσ ′ x) =⇒
(σ ′ (x :=$ y)) $ z = σ ′ $ z =⇒
equivp (snd (Rep-memory(update σ ′ x y))) =⇒
(x shares(update σ ′ x y) z) = (x sharesσ ′ z) =⇒ Q

shows Q
using assms
by (metis mem-update-E sharing-refl update-share)

lemma Pair-update-rep-inv-E:
assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
and 2 : memory-inv (Pair-upd-lifter σ src dst) =⇒ Q
shows Q
using assms update-sound ′[of σ]
by (auto simp: Abs-memory-inverse)

lemma equivp-update-rep: equivp (snd (Pair-upd-lifter (Rep-memory σ ′) src dst))
using Rep-memory [of σ ′] transfer-rep-sound [of (Rep-memory σ ′)]
apply (erule-tac src= src and dst = dst in Pair-update-rep-inv-E)
apply (rotate-tac 2)
apply (subst (asm) surjective-pairing[of (Pair-upd-lifter (Rep-memory σ ′) src dst)])
unfolding memory-inv.simps
apply (erule conjE)
apply assumption

done

lemma foldl-update-rep-exI:
assumes 1: σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Rep-memory σ ′) (n # nlist)
shows ∃σ ′′. σ ′′ = Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n) ∧

σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)
(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist)

using 1 unfolding foldl.simps Product-Type.split-beta
by (fold surjective-pairing[of (Rep-memory σ ′)], blast)

lemma foldl-update-rep-E:
assumes 1: σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Rep-memory σ ′) (n # nlist)
and 2:

∧
σ ′′. σ ′′ = Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n) =⇒

equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒
σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒ Q
shows Q

proof −
have foldl-exec: σ =

foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)
(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist)

using 1 unfolding foldl.simps Product-Type.split-beta
by (fold surjective-pairing[of (Rep-memory σ ′)])

EUROMILS D31.4 Page 117 of 438

D31.4 – Test-Generation Methods

also have equivp-upd-lifter ′: equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)))
using equivp-update-rep .

ultimately show ?thesis
using 2 foldl-exec foldl-update-rep-exI by blast

qed

lemma foldl-update-rep-E ′:
assumes 1: σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Rep-memory σ ′) (n # nlist)
and 2:

∧
z. equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒

σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)
(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒

(snd(Rep-memory σ ′)) z (fst n) =⇒
(fst (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) z = Some (snd n) =⇒ Q

and 3:
∧

z. equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒
σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒
¬(snd(Rep-memory σ ′)) z (fst n) =⇒
(fst (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) z =
(fst(Rep-memory σ ′)) z =⇒ Q

shows Q
using 1
apply (elim foldl-update-rep-E)
apply (erule Pair-upd-lifter-E ′)
apply (rule 2)
apply assumption+
apply (erule 3)
apply assumption+

done

lemma lookup-update-rep ′:
assumes 1: x sharesσ ′ y
shows (fst (Pair-upd-lifter (Rep-memory σ ′) src dst)) x =

(fst (Pair-upd-lifter (Rep-memory σ ′) src dst)) y
using 1 Rep-memory [of σ ′] transfer-rep-sound [of (Rep-memory σ ′)]
unfolding sharing-def
apply (erule-tac src= src and dst = dst in Pair-update-rep-inv-E)
apply (rotate-tac 2)
apply (subst (asm) surjective-pairing[of (Pair-upd-lifter (Rep-memory σ ′) src dst)])
unfolding memory-inv.simps
apply (erule conjE)
apply (erule allE)+
apply (erule impE)
unfolding Pair-upd-lifter-rep
apply simp
apply assumption

done

lemma mem-update-list-E:
assumes 1: σ = update-list-rep (Rep-memory σ ′) (n#nlist)
and 2: σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Rep-memory σ ′) (n # nlist) =⇒ Q
shows Q

EUROMILS D31.4 Page 118 of 438

D31.4 – Test-Generation Methods

using 1
apply (subst (asm) surjective-pairing[of (Rep-memory σ ′)])
unfolding update-list-rep.simps
apply (fold surjective-pairing[of (Rep-memory σ ′)])
apply (elim 2)

done

lemma mem-update-list-E ′:
assumes 1: σ = Rep-memory (update-list σ ′ (n#nlist))
and 2:

∧
z. equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒

σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)
(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒

(snd(Rep-memory σ ′)) z (fst n) =⇒
(fst (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) z = Some (snd n) =⇒ Q

and 3:
∧

z. equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒
σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒
¬(snd(Rep-memory σ ′)) z (fst n) =⇒
(fst (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) z =
(fst(Rep-memory σ ′)) z =⇒ Q

shows Q
using 1
unfolding update-list.rep-eq
apply (elim mem-update-list-E)
apply (erule foldl-update-rep-E ′)
apply (erule 2)
apply assumption+
apply (erule 3)
apply assumption+

done

lemma mem-update-list-E ′′:
assumes 1: σ = Rep-memory (update-list σ ′ (n#nlist))
and 2:

∧
z. equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒

σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)
(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒

z sharesσ ′ (fst n) =⇒
(σ ′(fst n :=$ snd n)) $ z = snd n =⇒ Q

and 3:
∧

z. equivp (snd (Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n))) =⇒
σ = foldl (λ(f , R) (x, y). Pair-upd-lifter (f , R) x y)

(Pair-upd-lifter (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒
¬(z sharesσ ′ (fst n)) =⇒
(σ ′(fst n :=$ snd n)) $ z = σ ′ $ z =⇒ Q

shows Q
using 1
unfolding update-list.rep-eq
apply (elim mem-update-list-E)
apply (erule foldl-update-rep-E ′)
apply (erule 2)
unfolding sharing-def update.rep-eq lookup-def
apply assumption+
apply simp
apply (erule 3)
unfolding sharing-def update.rep-eq lookup-def
apply assumption+
apply simp

done

EUROMILS D31.4 Page 119 of 438

D31.4 – Test-Generation Methods

4.9.11 Symbolic Execution Rules On Memory Transfer
lemma transfer-rep-inv-E:
assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
and 2 : memory-inv (transfer-rep σ src dst) =⇒ Q
shows Q
using assms transfer-rep-sound[of σ]
by (auto simp: Abs-memory-inverse)

lemma transfer-rep-simp:
transfer-rep (Rep-memory σ ′) src dst =
((fst (Rep-memory σ ′))o(id (dst := src)),
(λ x y . (snd (Rep-memory σ ′)) ((id (dst := src)) x) ((id (dst := src)) y)))

using surjective-pairing[of (Rep-memory σ ′)] transfer-rep.simps
by metis

lemma transfer-rep-E:
assumes 1: σ = transfer-rep (Rep-memory σ ′) src dst
and 2: σ = ((fst (Rep-memory σ ′))o(id (dst := src)),

(λ x y . (snd (Rep-memory σ ′)) ((id (dst := src)) x) ((id (dst := src)) y)))=⇒ Q
shows Q
using 1 unfolding transfer-rep-simp
by (elim 2)

lemma transfer-rep-fst-E:
assumes 1: σ = fst(transfer-rep (Rep-memory σ ′) src dst)
and 2: σ = (fst (Rep-memory σ ′))o(id (dst := src))=⇒ Q
shows Q
using 1 unfolding transfer-rep-simp fst-conv
by (elim 2)

lemma transfer-rep-fst1-E:
assumes 1: σ = fst(transfer-rep (Rep-memory σ ′) src dst)
and 2:

∧
x. σ x = (fst (Rep-memory σ ′)) (if x=dst then src else id x)=⇒ Q

shows Q
using 1 2 unfolding transfer-rep-simp fst-conv
by simp

lemma transfer-rep-fst1:
assumes 1: σ = fst(transfer-rep (Rep-memory σ ′) src dst)
shows

∧
x. x = dst =⇒ σ x = (fst (Rep-memory σ ′)) src

using 1 unfolding transfer-rep-simp
by simp

lemma transfer-rep-fst2:
assumes 1: σ = fst(transfer-rep (Rep-memory σ ′) src dst)
shows

∧
x. x 6= dst =⇒ σ x = (fst (Rep-memory σ ′)) (id x)

using 1 unfolding transfer-rep-simp
by simp

lemma transfer-rep-fst-E ′:
assumes 1: σ = fst(transfer-rep (Rep-memory σ ′) src dst)
and 2:

∧
x. x = dst =⇒ σ x = (fst (Rep-memory σ ′)) src=⇒ Q

and 3:
∧

x. x 6= dst =⇒ σ x = (fst (Rep-memory σ ′)) (id x)=⇒ Q
shows Q
using assms unfolding transfer-rep-simp
by force

lemma transfer-rep-snd-E:

EUROMILS D31.4 Page 120 of 438

D31.4 – Test-Generation Methods

assumes 1: σ = snd (transfer-rep (Rep-memory σ ′) src dst)
and 2: σ = (λ x y . (snd (Rep-memory σ ′)) ((id (dst := src)) x) ((id (dst := src)) y))=⇒ Q
shows Q
using 1 unfolding transfer-rep-simp snd-conv
by (elim 2)

lemma transfer-rep-snd1-E:
assumes 1: σ = snd(transfer-rep (Rep-memory σ ′) src dst)
and 2:

∧
x y. σ x y = (snd (Rep-memory σ ′)) (if x=dst then src else id x)

(if y=dst then src else id y)=⇒ Q
shows Q
using 1 2 unfolding transfer-rep-simp fst-conv
by simp

lemma transfer-rep-snd-E ′:
assumes 1: σ = snd(transfer-rep (Rep-memory σ ′) src dst)
and 2:

∧
x y. x = dst =⇒ y = dst =⇒ σ x y =(snd (Rep-memory σ ′)) src src =⇒ Q

and 3:
∧

x y. x 6= dst =⇒ y 6= dst =⇒ σ x y =(snd (Rep-memory σ ′)) (id x) (id y) =⇒ Q
and 4:

∧
x y. x = dst =⇒ y 6= dst =⇒ σ x y =(snd (Rep-memory σ ′)) (src) (id y) =⇒ Q

and 5:
∧

x y. x 6= dst =⇒ y = dst =⇒ σ x y =(snd (Rep-memory σ ′)) (id x) (src) =⇒ Q
shows Q
using assms unfolding transfer-rep-simp
by force

lemma transfer-rep-E ′:
assumes 1: σ = (transfer-rep (Rep-memory σ ′) src dst)
and 2:

∧
x y. x = dst =⇒ y = dst =⇒

(fst (transfer-rep (Rep-memory σ ′) src dst)) x = (fst (Rep-memory σ ′)) src=⇒
(snd (transfer-rep (Rep-memory σ ′) src dst)) x y =
(snd (Rep-memory σ ′)) src src =⇒ Q

and 3:
∧

x y. x 6= dst =⇒ y 6= dst =⇒
(snd (transfer-rep (Rep-memory σ ′) src dst)) x y =
(snd (Rep-memory σ ′)) (id x) (id y) =⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) x = (fst (Rep-memory σ ′)) (id x)=⇒ Q

and 4:
∧

x y. x = dst =⇒ y 6= dst =⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) x = (fst (Rep-memory σ ′)) src=⇒
(snd (transfer-rep (Rep-memory σ ′) src dst)) x y =
(snd (Rep-memory σ ′)) (src) (id y) =⇒ Q

and 5:
∧

x y. x 6= dst =⇒ y = dst =⇒
(snd (transfer-rep (Rep-memory σ ′) src dst)) x y =
(snd (Rep-memory σ ′)) (id x) (src) =⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) x =
(fst (Rep-memory σ ′)) (id x)=⇒ Q

shows Q
using assms unfolding transfer-rep-simp
by force

lemma lookup-transfer-rep:
assumes 1: (snd (transfer-rep (Rep-memory σ ′) src dst)) x y
shows (fst (transfer-rep (Rep-memory σ ′) src dst)) x =

(fst (transfer-rep (Rep-memory σ ′) src dst)) y
using 1 Rep-memory [of σ ′]
apply (erule-tac src= src and dst = dst in transfer-rep-inv-E)
apply (rotate-tac 1)
apply (subst (asm) surjective-pairing[of (transfer-rep (Rep-memory σ ′) src dst)])
unfolding memory-inv.simps

EUROMILS D31.4 Page 121 of 438

D31.4 – Test-Generation Methods

apply (erule conjE)
apply (erule allE)+
apply (erule impE)
unfolding transfer-rep-simp
apply simp-all

done

lemma lookup-transfer-rep ′:
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst

using Rep-memory [of σ ′]
apply (erule-tac src= src and dst = dst in transfer-rep-inv-E)
apply (rotate-tac 1)
apply (subst (asm) surjective-pairing[of (transfer-rep (Rep-memory σ ′) src dst)])
unfolding memory-inv.simps
apply (erule conjE)
apply (erule allE)+
apply (erule impE)
unfolding transfer-rep-simp
apply auto
using equivp-reflp snd-memory-equivp
apply metis

done

lemma mem-share-list-E:
assumes 1: σ = share-list-rep (Rep-memory σ ′) (n#nlist)
and 2: σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)

(Rep-memory σ ′) (n # nlist) =⇒ Q
shows Q
using 1
apply (subst (asm) surjective-pairing[of (Rep-memory σ ′)])
unfolding share-list-rep.simps
apply (fold surjective-pairing[of (Rep-memory σ ′)])
apply (elim 2)

done

lemma foldl-transfer-E:
assumes 1: σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)

(Rep-memory σ ′) (n # nlist)
and 2: equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) =⇒

σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)
(transfer-rep (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒

(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n) =⇒ Q

shows Q
using 1
unfolding foldl.simps Product-Type.split-beta
apply (fold surjective-pairing[of (Rep-memory σ ′)])
using Rep-memory [of σ ′] transfer-rep-sound [of (Rep-memory σ ′)]
apply (erule-tac src= fst n and dst = snd n in transfer-rep-inv-E)
apply (rotate-tac 2)
apply (subst (asm) surjective-pairing[of (transfer-rep (Rep-memory σ ′) (fst n) (snd n))])
unfolding memory-inv.simps
apply (erule conjE)
apply (erule 2)
apply assumption
apply (rule lookup-transfer-rep ′)

done

EUROMILS D31.4 Page 122 of 438

D31.4 – Test-Generation Methods

lemma foldl-transfer-rep-exI:
assumes 1: σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)

(Rep-memory σ ′) (n # nlist)
shows ∃σ ′′. σ ′′ = transfer-rep (Rep-memory σ ′) (fst n) (snd n) ∧

σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)
(transfer-rep (Rep-memory σ ′) (fst n) (snd n)) (nlist)

using 1 unfolding foldl.simps Product-Type.split-beta
by (fold surjective-pairing[of (Rep-memory σ ′)], blast)

lemma equivp-transfer-rep: equivp (snd (transfer-rep (Rep-memory σ ′) src dst))
using Rep-memory [of σ ′]
apply (erule-tac src= src and dst = dst in transfer-rep-inv-E)
apply (subst (asm) surjective-pairing[of (transfer-rep (Rep-memory σ ′) src dst)])
unfolding memory-inv.simps
apply (erule conjE)
apply assumption

done

lemma foldl-transfer-rep-E:
assumes 1: σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)

(Rep-memory σ ′) (n # nlist)
and 2:

∧
σ ′′. σ ′′ = transfer-rep (Rep-memory σ ′) (fst n) (snd n) =⇒

equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) =⇒
σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)

(transfer-rep (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒ Q
shows Q

proof −
have foldl-exec: σ =

foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)
(transfer-rep (Rep-memory σ ′) (fst n) (snd n)) (nlist)

using 1 unfolding foldl.simps Product-Type.split-beta
by (fold surjective-pairing[of (Rep-memory σ ′)])

also have equivp-upd-lifter ′: equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))
using equivp-transfer-rep .

ultimately show ?thesis
using 2 foldl-exec by fast

qed

lemma foldl-transfer-E ′:
assumes 1: σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)

(Rep-memory σ ′) (n # nlist)
and 2:

∧
x y. x = (snd n) =⇒ y = (snd n) =⇒

(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (fst n)=⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (fst n) (fst n) =⇒
equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

and 3:
∧

x y. x 6= (snd n) =⇒ y 6= (snd n) =⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (id x) (id y) =⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (id x)=⇒
equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

EUROMILS D31.4 Page 123 of 438

D31.4 – Test-Generation Methods

and 4:
∧

x y. x = (snd n) =⇒ y 6= (snd n) =⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (fst n)=⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (fst n) (id y) =⇒

equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

and 5:
∧

x y. x 6= (snd n) =⇒ y = (snd n) =⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (id x) (fst n) =⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (id x)=⇒
equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

shows Q
using 1
apply (elim foldl-transfer-rep-E)
apply (erule transfer-rep-E ′)
apply (erule 2)
apply assumption+
apply (rule lookup-transfer-rep ′)
apply (erule 3)
apply assumption+
apply (rule lookup-transfer-rep ′)
apply (erule 4)
apply assumption+
apply (rule lookup-transfer-rep ′)
apply (erule 5)
apply assumption+
apply (rule lookup-transfer-rep ′)

done

lemma mem-init-share-list-E ′:
assumes 1: σ = Rep-memory (init-share-list σ ′ (n#nlist))
and 2:

∧
x y. x = (snd n) =⇒ y = (snd n) =⇒

(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (fst n)=⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (fst n) (fst n) =⇒
equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

and 3:
∧

x y. x 6= (snd n) =⇒ y 6= (snd n) =⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (id x) (id y) =⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (id x)=⇒
equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

and 4:
∧

x y. x = (snd n) =⇒ y 6= (snd n) =⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (fst n)=⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (fst n) (id y) =⇒

equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒

EUROMILS D31.4 Page 124 of 438

D31.4 – Test-Generation Methods

(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

and 5:
∧

x y. x 6= (snd n) =⇒ y = (snd n) =⇒
(snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x y =
(snd (Rep-memory σ ′)) (id x) (fst n) =⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) x =
(fst (Rep-memory σ ′)) (id x)=⇒
equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n)))=⇒
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n)=⇒Q

shows Q
using 1
unfolding init-share-list.rep-eq
apply (elim mem-share-list-E)
apply (erule foldl-transfer-E ′)
apply (erule 2)
apply assumption+
apply (erule 3)
apply assumption+
apply (erule 4)
apply assumption+
apply (erule 5)
apply assumption+

done

lemma mem-init-share-list-E ′′:
assumes 1: σ = Rep-memory (init-share-list σ ′ (n#nlist))
and 2: equivp (snd (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) =⇒

σ = foldl (λ(f , R) (x, y). transfer-rep (f , R) x y)
(transfer-rep (Rep-memory σ ′) (fst n) (snd n)) (nlist) =⇒

(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (fst n) =
(fst (transfer-rep (Rep-memory σ ′) (fst n) (snd n))) (snd n) =⇒ Q

shows Q
using 1
unfolding init-share-list.rep-eq
apply (elim mem-share-list-E)
apply (erule foldl-transfer-E)
apply (erule 2)
apply assumption
apply (rule lookup-transfer-rep ′)

done

lemma Rep-memory-E:
assumes 1: (σ = Rep-memory (σ ′))
and 2: memory-inv σ =⇒ Q
shows Q
apply (insert 1)
apply (insert Rep-memory[of σ ′])
apply hypsubst
apply (insert 1)
apply (rotate-tac)
apply (subst (asm) HOL.eq-commute)
apply (simp only:)
apply (metis 2 Rep-memory-inverse memory-invariant)

done

EUROMILS D31.4 Page 125 of 438

D31.4 – Test-Generation Methods

lemma mem-adde-E:
assumes 1: σ = Rep-memory(adde σ

′ src dst)
and 2: σ = transfer-rep (Rep-memory σ ′) src dst =⇒

equivp (snd σ)=⇒
snd σ = (λ x y . (snd(Rep-memory σ ′)) ((id (dst := src)) x) ((id (dst := src)) y))=⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst=⇒Q

shows Q
using 1
unfolding adde.rep-eq
apply (elim 2)
using 1 2
apply simp
using 1
unfolding adde.rep-eq snd-def
apply (simp add: Product-Type.split-beta del:fun-upd-apply)
using snd-conv transfer-rep.elims
apply metis
apply (rule lookup-transfer-rep ′)

done

lemma mem-adde-E ′:
assumes 1: σ = Rep-memory(adde σ

′ src dst)
and 2:

∧
x y. x = dst =⇒ y = dst =⇒ (fst σ) x = (fst (Rep-memory σ ′)) src=⇒
(snd σ) x y =(snd (Rep-memory σ ′)) src src =⇒

equivp (snd σ)=⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst=⇒Q

and 3:
∧

x y. x 6= dst =⇒ y 6= dst =⇒ (snd σ) x y =(snd (Rep-memory σ ′)) (id x) (id y) =⇒
(fst σ) x = (fst (Rep-memory σ ′)) (id x)=⇒

equivp (snd σ)=⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst=⇒Q

and 4:
∧

x y. x = dst =⇒ y 6= dst =⇒ (fst σ) x = (fst (Rep-memory σ ′)) src=⇒
(snd σ) x y =(snd (Rep-memory σ ′)) (src) (id y) =⇒

equivp (snd σ)=⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst=⇒Q

and 5:
∧

x y. x 6= dst =⇒ y = dst =⇒ (snd σ) x y =(snd (Rep-memory σ ′)) (id x) (src) =⇒
(fst σ) x = (fst (Rep-memory σ ′)) (id x)=⇒

equivp (snd σ)=⇒
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst=⇒Q

shows Q
using 1
apply (elim mem-adde-E)
apply (elim transfer-rep-E ′)
apply (erule 2)
apply assumption+
apply (metis 1 adde.rep-eq)
apply (metis 1 adde.rep-eq)
apply metis
apply assumption+
apply (erule 3)
apply assumption+
apply (metis 1 adde.rep-eq)
apply (metis 1 adde.rep-eq)
apply metis

EUROMILS D31.4 Page 126 of 438

D31.4 – Test-Generation Methods

apply assumption+
apply (erule 4)
apply assumption+
apply (metis 1 adde.rep-eq)
apply (metis 1 adde.rep-eq)
apply metis
apply assumption+
apply (erule 5)
apply assumption+
apply (metis 1 adde.rep-eq)
apply (metis 1 adde.rep-eq)
apply metis
apply assumption+

done

lemma mem-init-share-list-E:
assumes 1: σ = Rep-memory (init-share-list σ ′ (n#nlist))
and 2: σ = share-list-rep (Rep-memory σ ′) (n#nlist) =⇒ Q
shows Q
using 1
unfolding init-share-list.rep-eq
by (elim 2)

lemma Rep-memory-E ′′:
assumes 1 : σ ∈ {(σ, R). equivp R ∧ (∀ x y. R x y −→ σ x = σ y)}
and 2 : memory-inv σ =⇒ Q
shows Q
using assms
by (auto simp: Abs-memory-inverse)

4.9.12 Properties on Memory Transfer
lemma adde-share:x sharesadde σ x y y

using fun-upd-apply id-apply mem-adde-E sharing-refl
unfolding sharing-def
by metis

lemma adde-share-lookup1:
(σ(x on y)) $ x = σ $ x

using lookup-transfer-rep ′ transfer-rep-fst1
unfolding lookup-def adde.rep-eq
by metis

lemma adde-share-lookup2:
(σ(x on y)) $ y = σ $ x

using transfer-rep-fst1
unfolding adde.rep-eq lookup-def
by metis

lemma adde-share-mono:
assumes 1: (x sharesσ y)
and 2: ¬(x sharesσ y ′)
shows (x sharesσ (x ′on y ′) y)

using assms
unfolding sharing-def
using 2 fun-upd-apply id-apply mem-adde-E sharing-refl
by metis

EUROMILS D31.4 Page 127 of 438

D31.4 – Test-Generation Methods

lemma adde-share-charn [simp, code-unfold]:
assumes 1: ¬(i sharesσ k ′)
and 2: ¬(k sharesσ k ′)
shows i sharesσ(i ′on k ′) k = i sharesσ k
using assms fun-upd-apply id-def mem-adde-E sharing-def sharing-refl
by metis

lemma adde-share-trans:
assumes 1: (x sharesσ z)
shows (z sharesσ(x on y) y)

using 1
unfolding sharing-def
using adde-share adde-share-mono mem-adde-E

equivp-reflp equivp-symp fun-upd-def id-def snd-memory-equivp
by smt

lemma adde-share-rec:
x ′ sharesσ(x on y) y ′ =

((x ′ sharesσ(x on y) x) ∧ (y ′ sharesσ(x on y) y)) ∨
((x ′ sharesσ(x ′on y) y) ∧ (y ′ sharesσ(y ′on x) x)) ∨
(x ′ sharesσ y ′)

by (metis adde-share)

lemma adde-share-trans ′:
assumes 1: (x shares(σ(x on y)) z)
shows (y shares(σ(x on y)) z)
using 1 adde-share sharing-sym sharing-trans
by fast

lemma adde-share-old-new-trans:
assumes 1: (x sharesσ z)
shows (y shares(σ(x on y)) z)
using 1 adde-share-trans sharing-sym
by fast

lemma adde-not-share-lookup:
assumes 1: ¬(x sharesσ z)
and 2: ¬(y sharesσ z)
shows σ (x on y) $ z = σ $ z
using assms
unfolding sharing-def lookup-def adde.rep-eq
using id-def sharing-def sharing-refl transfer-rep-fst2
by metis

lemma adde-share-dom:
assumes 1: z ∈ Domain σ
and 2: ¬(y sharesσ z)
shows (σ(x on y)) $ z = σ $ z
using assms
unfolding Domain-def sharing-def lookup-def
using 2 adde.rep-eq id-apply sharing-refl transfer-rep-fst2
by metis

lemma shares-result ′:
assumes 1: (x sharesσ y)
shows σ $ x = σ $ y
using assms lookup-def shares-result

EUROMILS D31.4 Page 128 of 438

D31.4 – Test-Generation Methods

by metis

lemma adde-share-cancel1:
assumes 1: (x sharesσ z)
shows (σ(x on y)) $ z = σ $ x
using 1 adde.rep-eq adde-share-trans lookup-def

lookup-transfer-rep sharing-def transfer-rep-fst1
by metis

4.9.13 Test on Sharing and Transfer via smt ...
lemma ∀ x y. x 6= y −→ ¬(x sharesσ y) =⇒

σ $ x > σ $ y =⇒ σ(3 on (4::nat))= σ ′ =⇒
σ ′′ = (σ ′(3 :=$ ((σ ′ $ 4) + 2))) =⇒

x 6= 3 =⇒ x 6= 4 =⇒ y 6= 3 =⇒ y 6= 4 =⇒ σ ′′ $ x > σ ′′ $ y
by (smt adde-not-share-lookup adde-share-charn update-apply)

4.9.14 Adaptation For the smt Solver
lemma adde-share-charn-smt :
¬(i sharesσ k ′) ∧
¬(k sharesσ k ′) −→
i sharesσ(i ′on k ′) k = i sharesσ k
using adde-share-charn
by simp

lemma adde-not-share-lookup-smt:
¬(x sharesσ z)∧ ¬(y sharesσ z)−→ (σ (x on y) $ z) = (σ $ z)
using adde-not-share-lookup
by auto

lemma adde-share-dom-smt:
z ∈ Domain σ ∧ ¬(y sharesσ z)−→ (σ(x on y)) $ z = σ $ z
using adde-share-dom
by auto

lemma adde-share-cancel1-smt:
(x sharesσ z)−→ (σ(x on y)) $ z = σ $ x

using adde-share-cancel1
by auto

lemma lookup-update-rep ′′-smt:
x sharesσ y−→(σ (src :=$ dst)) $ x = (σ (src :=$ dst)) $ y
using lookup-update-rep ′′

by auto

theorem update-commute-smt:
¬ (x sharesσ x ′) −→ ((σ(x :=$ y))(x ′ :=$ z)) = (σ(x ′:=$ z)(x :=$ y))
using update-commute
by auto

theorem update-cancel-smt:
(x sharesσ x ′)−→ (σ(x :=$ y)(x ′ :=$ z)) = (σ(x ′ :=$ z))

using update-cancel
by auto

lemma update-other-smt:

EUROMILS D31.4 Page 129 of 438

D31.4 – Test-Generation Methods

¬(z sharesσ x)−→ (σ(x :=$ a) $ z) = σ $ z
using update-other
by auto

lemma update-share-smt:
(z sharesσ x) −→ (σ(x :=$ a) $ z) = a
using update-share

by auto

lemma update-idem-smt :
(x sharesσ y)∧ x ∈ Domain σ ∧ (σ $ x = z) −→ (σ(x:=$ z)) = σ
using update-idem
by fast

lemma update-triv-smt:
(x sharesσ y) ∧ y ∈ Domain σ −→ (σ (x :=$ (σ $ y))) = σ
using update-triv
by auto

lemma shares-result-smt:
x sharesσ y−→ σ $ x = σ $ y
using shares-result ′

by fast

lemma shares-dom-smt :
x sharesσ y−→ (x ∈ Domain σ) = (y ∈ Domain σ)
using shares-dom
by fast

lemma sharing-refl-smt : (x sharesσ x)
using sharing-refl
by simp

lemma sharing-sym-smt :
x sharesσ y−→y sharesσ x
using sharing-sym
by (auto)

lemma sharing-commute-smt : x sharesσ y = (y sharesσ x)
by(auto intro: sharing-sym)

lemma sharing-trans-smt:
x sharesσ y −→ y sharesσ z −→ x sharesσ z
using sharing-trans
by(auto)

lemma nat-0-le-smt: 0 ≤ z −→ int (nat z) = z
by transfer clarsimp

lemma nat-le-0-smt: 0 > z −→ int (nat z) = 0
by transfer clarsimp

lemma update-apply-smt: (σ(x :=$ y)) $ z = (if z sharesσ x then y else σ $ z)
using update-apply
by fast

lemma adde-share-lookup2-smt:
(σ(x on y)) $ y = σ $ x

EUROMILS D31.4 Page 130 of 438

D31.4 – Test-Generation Methods

using adde-share-lookup2
by fast

lemma adde-share-trans-smt:
(x sharesσ z) −→(z sharesσ(x on y) y)

using adde-share-trans
by fast

lemma adde-share-mono-smt:
(x sharesσ y)−→ ¬(x sharesσ y ′)−→ (x sharesσ (x ′on y ′) y)

using adde-share-mono
by fast

lemma adde-share-lookup1-smt:
(σ(x on y)) $ x = σ $ x

using adde-share-lookup1
by fast

lemma adde-share-smt:x sharesadde σ x y y
using adde-share
by fast

lemma adde-share-trans ′-smt:
(x shares(σ(x on y)) z)−→(y shares(σ(x on y)) z)
using adde-share-trans ′

by fast

lemma adde-share-old-new-trans-smt:
(x sharesσ z)−→(y shares(σ(x on y)) z)
using adde-share-old-new-trans
by fast

lemma Domain-mono-smt:
x ∈ Domain σ−→(x sharesσ y)−→y ∈ Domain σ
using Domain-mono
by fast

lemma sharing-upd-smt: x shares(σ(a :=$ b)) y = x sharesσ y
using sharing-upd
by fast

lemma sharing-charn6-smt :
i 6= k−→¬(i sharesinit-mem-list S k)
using sharing-charn6
by fast

lemma mem1-smt:(σ(a onb)$ a) = (σ (a onb) $b)
by (metis adde-share-lookup1-smt adde-share-lookup2-smt)

lemma transfer-rep-fst2-smt:
σ = fst(transfer-rep (Rep-memory σ ′) src dst)−→
x 6= dst −→ σ x = (fst (Rep-memory σ ′)) (id x)

using transfer-rep-fst2
by metis

lemma mem-adde-E-smt:

EUROMILS D31.4 Page 131 of 438

D31.4 – Test-Generation Methods

σ = Rep-memory(adde σ
′ src dst)∧

(σ = transfer-rep (Rep-memory σ ′) src dst ∧
equivp (snd σ)∧
snd σ = (λ x y . (snd(Rep-memory σ ′)) ((id (dst := src)) x) ((id (dst := src)) y))∧
(fst (transfer-rep (Rep-memory σ ′) src dst)) src =
(fst (transfer-rep (Rep-memory σ ′) src dst)) dst −→Q)−→ Q

using mem-adde-E
by metis

end

theory IPC-errors-type
imports ../TypeSchemes

../Memory/SharedMemory

begin

4.9.15 Error codes datatype

4.10 HOL representation of PikeOS IPC error codes

— error codes are returned if an IPC action is aborted, the error codes has the following specificities:

• Must indicates which stage the error was occured.

• Each IPC stage has its own set of error codes

• Errors in the receiving stages does not affect sending stages

• Errors in sending stages affect receiving stages

We have another type of errors which is related to the different memory functionality.

— IPC errors
datatype error-IPC =

no-IPC-error
| error-IPC-4 — if an action is used in stepping function with the wrong stage
— errors of the SEND part of IPC

| error-IPC-21-in-PREP-SEND — IF the receiver is an OR
| error-IPC-22-in-PREP-SEND — IF the receiver is an CR and the sender is not the one who can send msg to this
receiver
| error-IPC-23-in-PREP-SEND — IF the receiver is an NR
| error-IPC-4-in-PREP-SEND— if an action is used in the wrong stage

| error-IPC-21-in-PREP-RECV — IF the receiver is an OR
| error-IPC-22-in-PREP-RECV — IF the receiver is an CR and the sender is not the one who can send msg to this
receiver
| error-IPC-23-in-PREP-RECV — IF the receiver is an NR
| error-IPC-4-in-PREP-RECV— if an action is used in the wrong stage

| error-IPC-1-in-WAIT-SEND — if the thread has no rights to communicate with his partner
| error-IPC-2-in-WAIT-SEND — if the thread has no rights to access to this list of virtual adresses
| error-IPC-3-in-WAIT-SEND — if the thread try to send an IPC msg to him self

EUROMILS D31.4 Page 132 of 438

D31.4 – Test-Generation Methods

| error-IPC-4-in-WAIT-SEND— if an action is used in the wrong stage
| error-IPC-5-in-WAIT-SEND — if the receiver dont exist in the list of threads in the systeme
| error-IPC-6-in-WAIT-SEND — if the list of threads in the systeme is Nil
| error-IPC-7-in-WAIT-SEND — if the caller can not communicate with the receiver

|error-IPC-1-in-BUF-SEND — if the thread has no rights to access to this list of virtual adresses

|error-IPC-1-in-BUF-RECV — if the thread has no rights to access to this list of virtual adresses

| error-IPC-1-in-WAIT-RECV — if the thread has no rights to communicate with his partner
| error-IPC-2-in-WAIT-RECV — if the thread has no rights to access to this list of virtual adresses
| error-IPC-3-in-WAIT-RECV — if the thread try to send an IPC msg to him self
| error-IPC-4-in-WAIT-RECV— if an action is used in the wrong stage
| error-IPC-5-in-WAIT-RECV — if the receiver dont exist in the list of threads in the systeme Go to Done stage
| error-IPC-6-in-WAIT-RECV — if the list of threads in the systeme is Nil
| error-IPC-7-in-WAIT-RECV — if the caller can not communicate with the receiver

— memory errors
datatype error-memory =
no-mem-error — no errors related to memory adresses
| not-valid-sender-addr-in-PREP-SEND — error related to the adresses of the sender
| not-valid-receiver-addr-in-PREP-SEND — error related to the adresses of the receiver
| not-valid-receiver-addr-in-PREP-RECV
| not-valid-sender-addr-in-PREP-RECV

— datatype that contain memory and IPC errors

datatype errors =
NO-ERRORS
| ERROR-MEM error-memory
| ERROR-IPC error-IPC

type-synonym erroripc = errors
end

theory IPC-thread-type
imports ../Memory/SharedMemory

../TypeSchemes

begin

4.11 HOL representation of PikeOS threads type

datatype thread-state = CURRENT | WAITING | READY | STOPPED | INACTIVE

In addition to the communication rights, the scope of IPC communication can further constrained by the
receiving thread.

• If thread initiates an OR operation, any threads having rights can send msg to this thread.

• If thread initiates CR operation, it limits the IPC sending partner to one specific thread.

• If thread initiates NR operation, no thread can send a message to this thread.

datatype th-ipc-st =
OR — Open Receive
| CR — Close Receive

EUROMILS D31.4 Page 133 of 438

D31.4 – Test-Generation Methods

| NR — Nil Receive

type-synonym threadid = (nat ∗ nat ∗ nat)

type-synonym threadipc = (threadid, thread-state, th-ipc-st, (nat, int) memory ,threadid) thread

4.11.1 interface between thread and memory
definition update-th-smm-equiv
where update-th-smm-equiv th addr val = update (own-vmem-adr th) addr val

4.11.2 Relation between threads adresses and memory adresses

This section contains some predicate that defines relations between own thread addresses and memory
addresses those predicate will be used to define some error codes related to own thread addresses.

— predicate that specify if this list of addresses are part of the addresses of the memory

definition is-part-mem ::
(′a, ′b) memory⇒ ′a⇒ bool

where is-part-mem mem addr = (addr ∈ (dom o fst o Rep-memory) mem)

definition is-part-mem-th ::
(′c, ′d, ′e, (′a, ′b) memory, ′f , ′g) thread-scheme⇒(′a, ′b) memory⇒ ′a⇒ bool

where is-part-mem-th th mem addr = (is-part-mem (own-vmem-adr th) addr −→ is-part-mem mem addr)

— predicate that specify if this list of addresses are part of the an other list of addresses

definition is-part-addr-addr ::
(′a, ′b) memory⇒ (′a, ′b) memory⇒ ′a⇒ bool

where is-part-addr-addr mem mem ′ addr= (is-part-mem mem ′ addr −→ is-part-mem mem addr)

— This definition assures that a given list of addresses is part of list of addresses of thread
definition is-part-addr-th ::

(′c, ′d, ′e, (′a, ′b) memory, ′f , ′g) thread-scheme⇒ ′a⇒ bool
where is-part-addr-th th addr = (is-part-mem (own-vmem-adr th) addr)

— This predicate assures that a given list of addresses is a part of memory addresses and part of thread addresses
and the thread addresses are part of the memory

definition is-part-addr-th-mem ::
(′c, ′d, ′e, (′a, ′b) memory, ′f , ′g) thread-scheme⇒ (′a, ′b) memory⇒ ′a⇒ bool

where is-part-addr-th-mem th mem ns = (is-part-addr-addr mem (own-vmem-adr th) ns)

lemma [simp]:is-part-addr-th-mem th mem ns = is-part-mem-th th mem ns
unfolding is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def
by simp

4.11.3 Updating thread list in the state
— We will specify thread list inside our system by a partial function that takes a thread id and returns thread
informations

type-synonym (′th-id, ′th-info) thread-tab = ′th-id ⇀ ′th-info

fun thread-tab-update ::
(′th-id ⇀ ′th-info)⇒ ′th-id⇒ ′th-info⇒ (′th-id ⇀ ′th-info)

EUROMILS D31.4 Page 134 of 438

D31.4 – Test-Generation Methods

where thread-tab-update th-tab th-id th-info = th-tab(th-id 7→ th-info)

— Invariant on updating thread table

fun update-th-waiting-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d, ′e) thread-scheme)⇒ ′th-id⇒ bool

where update-th-waiting-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = WAITING)

fun update-th-ready-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d, ′e) thread-scheme)⇒ ′th-id⇒ bool

where update-th-ready-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = READY)

fun update-th-current-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d, ′e) thread-scheme)⇒ ′th-id⇒ bool

where update-th-current-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = CURRENT)

fun update-th-stopped-true::
(′th-id ⇀ (′a, thread-state, ′b, ′c, ′d, ′e) thread-scheme)⇒ ′th-id⇒ bool

where update-th-stopped-true th-tab th-id =
(th-id ∈ dom th-tab ∧ ((th-state o the o th-tab) th-id) = STOPPED)

— update functions for thread state

fun update-th-waiting
where update-th-waiting th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := WAITING|))

else th-tab)

fun update-th-ready
where update-th-ready th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := READY|))

else th-tab)

fun update-th-current
where update-th-current th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := CURRENT|))

else th-tab)

fun update-th-stopped
where update-th-stopped th-id th-tab = (if th-id ∈ dom th-tab

then th-tab(th-id 7→ ((the o th-tab) th-id)
(|th-state := STOPPED|))

else th-tab)

4.11.4 Get thread by thread ID
— Function that find an element in the list under a given condition

primrec find :: (′a⇒ bool)⇒ ′a list⇒ ′a option where
find - [] = None |
find P (x#xs) = (if P x then Some x else find P xs)

EUROMILS D31.4 Page 135 of 438

D31.4 – Test-Generation Methods

— A thread equality procedure ... 2 threads are equal if they have the same ID

definition thread-eq
where thread-eq th-id thread = (th-id = thread-id thread)

— An interface that let us to get a thread structure using the thread ID

definition get-thread-by-id
where get-thread-by-id th-id thl= find (thread-eq th-id) thl

end

theory IPC-state-model

imports IPC-errors-type IPC-thread-type

begin

4.12 HOL representation of state type model for IPC

4.12.1 informations on threads
record (′thread-id, ′error) th-info =

act-info:: ′thread-id ⇀ ′error

record stateid = ((nat, int)memory, threadid, (threadid, threadipc) thread-tab,
(threadid⇒ threadid ⇒ bool),
(threadid⇒ (nat, int)memory⇒ bool), errors) kstate +
th-flag ::(threadid, errors) th-info

4.12.2 Interface between IPC state and threads
— An interface that let us to get a thread structure using the thread ID inside a state

definition get-thread-by-id ′

where get-thread-by-id ′ th-id σ = (thread-list (σ:: ′a stateid-scheme)) th-id

4.12.3 Interface between IPC state and memory model
definition upd-st-res-equiv
where upd-st-res-equiv σ msg = (update-th-smm-equiv (current-thread σ) (resource σ) msg)

definition upd-st-res-equivid
where upd-st-res-equivid (σ::stateid) msg =

update-th-smm-equiv ((the o (get-thread-by-id ′ o current-thread) σ) σ) msg
((the o (fst o Rep-memory o resource) σ) msg)

term (thread-list (σ:: ′a stateid-scheme))(partner (σ:: ′a stateid-scheme))

term fold (λ addr y. update y addr ((the o ((fst o Rep-memory) (resource (σ:: ′a stateid-scheme))))
addr)) addr (resource (σ:: ′a stateid-scheme))

EUROMILS D31.4 Page 136 of 438

D31.4 – Test-Generation Methods

term fold (λ addr y. update y addr val) addr mem

abbreviation
update-state caller σ f error ≡ σ(|current-thread := caller,

thread-list := f caller (thread-list σ),
error-codes := error|)

abbreviation
init-act-info caller partner σ ≡ σ(|th-flag := (th-flag σ)

(|act-info := (((act-info o th-flag)σ)
(caller := None,
partner:= None))|)

|)

lemma fun-upd (fun-upd f x z) y z ′ = f (x:=z,y:=z ′)
by auto

lemma
assumes 1:x 6= y
and 2: fun-upd f x z = g
shows g y = f y
using assms
by auto

lemma
assumes 1:z6= None
and 2:fun-upd f x z = g
shows the z ∈ (ran g)
using assms
unfolding ran-def
by auto

end

theory IPC-actions-preconditions
imports IPC-state-model
begin

4.13 HOL representation of IPC preconditions

4.13.1 IPC conditions on threads parameters

This definition assures thats the partener thread is an Open Receive thread. If this condition is not satisfied
when it is checked in a given IPC stage the corresponding error code error-IPC-21-in-PREP-SEND is
returned

definition IPC-params-c1 ::
(′a, ′b, th-ipc-st, ′c, ′d, ′e) thread-scheme⇒ bool

where IPC-params-c1 th = (th-ipc-st th = OR)

lemma IPC-params-c1-direct1[simp] :
IPC-params-c1 (|thread-id = a1, th-state = a2,th-ipc-st = OR, own-vmem-adr = a3,cpartner = a4|)
by(simp add:IPC-params-c1-def)

lemma IPC-params-c1-direct2[simp] :

EUROMILS D31.4 Page 137 of 438

D31.4 – Test-Generation Methods

¬IPC-params-c1 (|thread-id = a1, th-state = a2,th-ipc-st = CR, own-vmem-adr = a3,cpartner = a4|)
by(simp add:IPC-params-c1-def)

lemma IPC-params-c1-direct3[simp] :
¬IPC-params-c1 (|thread-id = a1, th-state = a2,th-ipc-st = NR, own-vmem-adr = a3,cpartner = a4|)
by(simp add:IPC-params-c1-def)

the corresponding error code error-IPC-22-in-PREP-SEND is returned

definition IPC-params-c2 ::
(′a, ′b, th-ipc-st, ′c, ′d, ′e) thread-scheme⇒ bool

where IPC-params-c2 th = (th-ipc-st th = CR)

the corresponding error code error-IPC-23-in-PREP-SEND is returned

definition IPC-params-c3 ::
(′a, ′b, th-ipc-st, ′c, ′d, ′e) thread-scheme⇒ bool

where IPC-params-c3 th = (th-ipc-st th = NR)

definition IPC-params-c4
::threadid ⇒ threadid ⇒ bool

where IPC-params-c4 caller partner = (caller 6= partner)

definition IPC-params-c6
::threadid ⇒ (threadid,

′b, th-ipc-st, ′c, threadid,
′e) thread-scheme⇒ bool

where IPC-params-c6 caller partner = (caller = cpartner partner)

definition IPC-params-c5
::threadid ⇒ ′a stateid-scheme⇒ bool

where IPC-params-c5 caller σ = (caller ∈ (dom (thread-list σ)) ∧
(th-state o the)((thread-list σ) caller) 6= STOPPED)

4.13.2 IPC conditions on threads communication rights
definition IPC-sub-sub-sp

::threadid ⇒threadid ⇒ (threadid⇒threadid⇒ bool)⇒(threadid ⇀ threadipc)⇒ bool
where IPC-sub-sub-sp caller partner rel thl = (reflp rel ∧ rel caller partner ∧

caller ∈ dom thl ∧ partner ∈ dom thl)

definition IPC-send-comm-check
::threadid ⇒threadid ⇒ (threadid⇒threadid⇒ bool)⇒(threadid ⇀ threadipc)⇒ bool

where IPC-send-comm-check caller partner rel thl =
(IPC-sub-sub-sp caller partner rel thl ∧ IPC-params-c4 caller partner)

definition IPC-recv-comm-check
::threadid ⇒threadid ⇒ (threadid⇒threadid⇒ bool)⇒(threadid ⇀ threadipc)⇒ bool

where IPC-recv-comm-check caller partner rel thl = IPC-sub-sub-sp caller partner rel thl

4.13.3 IPC conditions on threads access rights
definition IPC-sub-obj-sp
where IPC-sub-obj-sp = undefined

definition IPC-buf-check
:: threadid ⇒threadid ⇒ (nat, int) memory⇒ (threadid ⇒ (nat, int) memory ⇒bool)⇒

(threadid ⇀ threadipc)⇒bool
where IPC-buf-check caller partner mem rel thl =

(caller ∈ dom thl ∧ partner ∈ dom thl ∧
(dom o fst o Rep-memory)((own-vmem-adr o the o thl) caller) ⊆
((dom o fst o Rep-memory) mem) ∧ rel partner mem)

EUROMILS D31.4 Page 138 of 438

D31.4 – Test-Generation Methods

definition IPC-map-check
where IPC-map-check = undefined

4.13.4 interface between IPC Preconditions and IPC ′a stateid-scheme

definition IPC-send-comm-check-stid
::threadid ⇒ threadid ⇒ ′a stateid-scheme⇒ bool

where IPC-send-comm-check-stid caller partner σ =
(IPC-sub-sub-sp caller partner (communication-rights σ) (thread-list σ) ∧
IPC-params-c4 caller partner)

definition IPC-recv-comm-check-stid
::threadid ⇒ threadid ⇒ ′a stateid-scheme⇒ bool

where IPC-recv-comm-check-stid caller partner σ =
IPC-sub-sub-sp caller partner (communication-rights σ) (thread-list σ)

definition IPC-buf-check-stid
::threadid ⇒ threadid ⇒ ′a stateid-scheme⇒ bool

where IPC-buf-check-stid caller partner σ =
IPC-buf-check caller partner (resource σ) (access-rights σ) (thread-list σ)

definition IPC-map-check-stid
where IPC-map-check-stid = undefined

end

theory IPC-atomic-actions
imports IPC-actions-preconditions ../../../../src/TestLib

begin

4.14 HOL representation of PikeOS IPC atomic actions

4.14.1 Types instantiation

In order to model PikeOS IPC API atomic actions, we will instantiate types of the parameters of a by
other Isabelle datatypes as following:

datatype p4-stageipc =
PREP — checking file descriptor informations
| WAIT — synchronising
| BUF — MEM COPY
| MAP — MEM MAP
| DONE — IPC end

datatype (′thread-id , ′adresses)
p4-directipc =

SEND ′thread-id ′thread-id ′adresses
| RECV ′thread-id ′thread-id ′adresses

datatype (′thread-id , ′adresses) actionipc-simplified =
IPC-SEND ′thread-id ′thread-id ′adresses

| IPC-RECV ′thread-id ′thread-id ′adresses

EUROMILS D31.4 Page 139 of 438

D31.4 – Test-Generation Methods

To avoid the complexe representation of memory, we represent the memory content as a list of integers
and the adresses are natural numbers. An id of the thread is represented by a tuple of natural numbers that
specify, the task and the partition that the thread belongs to. To use this abstraction on PikeOS IPC API
in our nvironment, we will just define a new type and instantiate our free variables a and b by Isabelle
natural numbers type as follwing:

type-synonym p4-actionipc-simplified = (nat × nat × nat , nat list) actionipc-simplified

type-synonym ACTIONipc = (p4-stageipc, (nat × nat × nat, nat list) p4-directipc) actionipc

type-synonym (′o, ′σ)MonSE = ′σ ⇀ (′o ∗ ′σ)

4.14.2 Atomic actions semantics

Actually, PikeOS IPC API provides 7 system calls. An execution of each system call will split it to
atomic actions. Those atomic actions are called stages. In order to execute The p4_ipc_send call, the
kernel will split it into 4 stages:

1. PREP stage

2. WAIT stage

3. BUF stage

4. DONE stage

In addition of providing interruption points, the execution of those stages is used to provide a security
model to the IPC mechanism. In each stage and during the execution a set of conditions will be checked
by the kernel. If one of the conditions is not satisfied, for example the communication security policy is
not respected, the kernel abort the call and return an error code.

4.14.3 Semantics of atomic actions with thread IDs as arguments
lemma is-part-addr-th-mem a b c= is-part-mem-th a b c
unfolding is-part-addr-th-mem-def is-part-mem-th-def is-part-addr-addr-def
by (simp)

definition PREP-SENDid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where PREP-SENDid σ act =

(case act of (IPC PREP (SEND caller partner msg))⇒
if list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg
then

if IPC-params-c1 ((the o thread-list σ) partner)
then σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|)

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|)

else
σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),

EUROMILS D31.4 Page 140 of 438

D31.4 – Test-Generation Methods

error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|)
else σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|))

else σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|))

definition PREP-RECVid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where PREP-RECVid σ act = (

case act of (IPC PREP (RECV caller partner msg))⇒
if list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg
then

if IPC-params-c1 ((the o thread-list σ) partner)
then σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|)

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|)

else
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|)

else σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|))

else σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|))

definition WAIT-SENDid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where WAIT-SENDid σ act =

(case act of (IPC WAIT (SEND caller partner msg))⇒
if ¬ IPC-send-comm-check-stid caller partner σ
then σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|)

else
if ¬ IPC-params-c4 caller partner
then σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|)

else
if ¬IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒
σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND|)

EUROMILS D31.4 Page 141 of 438

D31.4 – Test-Generation Methods

| Some th⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|))

else
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|))

definition WAIT-RECVid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where WAIT-RECVid σ act =

(case act of (IPC WAIT (RECV caller partner msg))⇒
if ¬ IPC-recv-comm-check-stid caller partner σ
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|)

else
if ¬ IPC-params-c4 caller partner
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|)

else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV|)
| Some th⇒ σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV|))

else
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|))

definition BUF-SENDid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where BUF-SENDid σ act =

(case act of (IPC BUF (SEND caller partner msg))⇒
if ¬ IPC-buf-check-stid caller partner σ
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND|)

else
σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)
(∗if a BUF op is execute this means that there are no errors

EUROMILS D31.4 Page 142 of 438

D31.4 – Test-Generation Methods

in check stages∗))

definition BUF-RECVid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where BUF-RECVid σ act =

(case act of (IPC BUF (RECV caller partner msg))⇒
if ¬ IPC-buf-check-stid caller partner σ
then σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|)

else
σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))

definition MAP-SENDid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where MAP-SENDid σ act =

(case act of (IPC MAP (SEND caller partner msg))⇒
σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)
(∗if a MAP op is execute this means that BUF was executed without errors∗))

definition MAP-RECVid

:: ′a stateid-scheme⇒ ACTIONipc ⇒ ′a stateid-scheme
where MAP-RECVid σ act =

(case act of (IPC MAP (RECV caller partner msg))⇒
σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)
(∗if a MAP op is execute this means that BUF was executed without errors∗))

definition DONE-SENDid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where DONE-SENDid σ act = σ

definition DONE-RECVid

EUROMILS D31.4 Page 143 of 438

D31.4 – Test-Generation Methods

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where DONE-RECVid σ act = σ

4.14.4 Semantics of atomic actions based on monads
fun PREP-SENDMON :: ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where

PREP-SENDMON (IPC PREP (SEND caller partner msg)) σ =
(if list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg

then
if list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg
then

if IPC-params-c1 ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

else
unitSE (ERROR-IPC error-IPC-22-in-PREP-SEND)

(σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|))

else unitSE (ERROR-IPC error-IPC-23-in-PREP-SEND)
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|)))

else unitSE (ERROR-MEM not-valid-receiver-addr-in-PREP-SEND)
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-SEND|))

else unitSE (ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)))

(∗hyÃĺpothese: all other atomic actions have no purge∗)
| PREP-SENDMON a σ = unitSE (error-codes σ) σ

fun PREP-RECVMON :: ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where

PREP-RECVMON (IPC PREP (RECV caller partner msg)) σ =
(if list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg
then

if list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg
then

if IPC-params-c1 ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),

EUROMILS D31.4 Page 144 of 438

D31.4 – Test-Generation Methods

error-codes := NO-ERRORS|))
else
(if IPC-params-c2 ((the o thread-list σ) partner)

then
if IPC-params-c6 caller ((the o thread-list σ) partner)
then unitSE (NO-ERRORS)

(σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

else
unitSE (ERROR-IPC error-IPC-22-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|))

else
unitSE (ERROR-IPC error-IPC-23-in-PREP-RECV)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)))

else
unitSE (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|))

else
unitSE (ERROR-MEM not-valid-sender-addr-in-PREP-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-RECV|)))

(∗hyÃĺpothese: all other atomic actions have no purge∗)

| PREP-RECVMON a σ = unitSE (error-codes σ) σ

fun WAIT-SENDMON :: ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where

WAIT-SENDMON (IPC WAIT (SEND caller partner msg)) σ =
(if ¬ IPC-send-comm-check-stid caller partner σ
then unitSE (ERROR-IPC error-IPC-1-in-WAIT-SEND)

(σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|))

else
if ¬ IPC-params-c4 caller partner
then unitSE (ERROR-IPC error-IPC-3-in-WAIT-SEND)

(σ (|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|))

else
if ¬IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒

unitSE (ERROR-IPC error-IPC-6-in-WAIT-SEND)
(σ (|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND|))

| Some th⇒ unitSE (ERROR-IPC error-IPC-5-in-WAIT-SEND)
(σ(|current-thread := caller ,

EUROMILS D31.4 Page 145 of 438

D31.4 – Test-Generation Methods

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|)))

else
unitSE (NO-ERRORS) (σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|)))

| WAIT-SENDMON a σ = unitSE (error-codes σ) σ

fun WAIT-RECVMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where WAIT-RECVMON (IPC WAIT (RECV caller partner msg)) σ =

(if ¬ IPC-recv-comm-check-stid caller partner σ
then unitSE (ERROR-IPC error-IPC-1-in-WAIT-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|))

else
if ¬ IPC-params-c4 caller partner
then unitSE (ERROR-IPC error-IPC-3-in-WAIT-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|))

else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒

unitSE (ERROR-IPC error-IPC-6-in-WAIT-RECV)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV|))

| Some th⇒ unitSE (ERROR-IPC error-IPC-5-in-WAIT-RECV)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV|)))

else
unitSE (NO-ERRORS)

(σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|)))

| WAIT-RECVMON a σ = unitSE (error-codes σ) σ

fun BUF-SENDMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where

BUF-SENDMON (IPC BUF (SEND caller partner msg)) σ =
(if ¬ IPC-buf-check-stid caller partner σ
then unitSE (ERROR-IPC error-IPC-1-in-BUF-RECV)

(σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|))

else
unitSE (NO-ERRORS)

(σ(|current-thread := caller,
resource := update-list (resource σ)

(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner

EUROMILS D31.4 Page 146 of 438

D31.4 – Test-Generation Methods

(thread-list σ)),
error-codes := NO-ERRORS|)))

| BUF-SENDMON a σ = unitSE (error-codes σ) σ

fun BUF-RECVMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where

BUF-RECVMON (IPC BUF (RECV caller partner msg)) σ =
(if ¬ IPC-buf-check-stid caller partner σ

then
unitSE (ERROR-IPC error-IPC-1-in-BUF-RECV)
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|))

else
unitSE (NO-ERRORS)
(σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)))
| BUF-RECVMON a σ = unitSE (error-codes σ) σ

fun MAP-SENDMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where MAP-SENDMON (IPC MAP (SEND caller partner msg)) σ =

unitSE (NO-ERRORS) (σ(|current-thread := caller,
resource := init-share-list (resource σ)

(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
| MAP-SENDMON a σ = unitSE (error-codes σ) σ

fun MAP-RECVMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where MAP-RECVMON (IPC MAP (SEND caller partner msg)) σ =

unitSE (NO-ERRORS)
(σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
| MAP-RECVMON a σ = unitSE (error-codes σ) σ

fun DONE-SENDMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where DONE-SENDMON a σ = unitSE (error-codes σ) σ

fun DONE-RECVMON ::ACTIONipc⇒ ′a stateid-scheme⇒ (errors ∗ ′a stateid-scheme) option
where DONE-RECVMON a σ = unitSE (error-codes σ) σ

EUROMILS D31.4 Page 147 of 438

D31.4 – Test-Generation Methods

definition IPC-protocol a =
(out1← PREP-SENDMON a ; (out2← PREP-RECVMON a ; (out3← WAIT-SENDMON a ;
(out4←WAIT-RECVMON a; (out5← BUF-SENDMON a; (out6← BUF-RECVMON a ;
(out7←DONE-SENDMON a ; DONE-RECVMON a)))))))

4.14.5 Execution function for PikeOS IPC atomic actions with thread IDs as arguments
fun exec-actionid

:: ′a stateid-scheme⇒ ACTIONipc⇒ ′a stateid-scheme
where

PREP-SEND-run ′:exec-actionid σ (IPC PREP (SEND caller partner msg)) =
PREP-SENDid σ (IPC PREP (SEND caller partner msg))|

PREP-RECV-run ′:exec-actionid σ (IPC PREP (RECV caller partner msg)) =
PREP-RECVid σ (IPC PREP (RECV caller partner msg))|

WAIT-SEND-run ′:exec-actionid σ (IPC WAIT(SEND caller partner msg)) =
WAIT-SENDid σ (IPC WAIT (SEND caller partner msg))|

WAIT-RECV-run ′:exec-actionid σ (IPC WAIT(RECV caller partner msg)) =
WAIT-RECVid σ (IPC WAIT (RECV caller partner msg))|

BUF-SEND-run ′ :exec-actionid σ (IPC BUF (SEND caller partner msg)) =
BUF-SENDid σ (IPC BUF (SEND caller partner msg)) |

BUF-RECV-run ′ :exec-actionid σ (IPC BUF(RECV caller partner msg)) =
BUF-RECVid σ (IPC BUF(RECV caller partner msg)) |

MAP-SEND-run ′ :exec-actionid σ (IPC MAP (SEND caller partner msg)) =
MAP-SENDid σ (IPC MAP (SEND caller partner msg)) |

MAP-RECV-run ′ :exec-actionid σ (IPC MAP (RECV caller partner msg)) =
MAP-RECVid σ (IPC MAP (RECV caller partner msg)) |

DONE-SEND-run ′ :exec-actionid σ (IPC DONE(SEND caller partner msg)) = σ |

DONE-RECV-run ′ :exec-actionid σ (IPC DONE(RECV caller partner msg)) = σ

4.14.6 Predicates on atomic actions

Different cases of send action

definition actions-send-cases a caller partner msg =(a = IPC PREP (SEND caller partner msg) ∨
a = IPC WAIT (SEND caller partner msg) ∨
a = IPC BUF (SEND caller partner msg) ∨
a = IPC DONE (SEND caller partner msg))

Different cases of receive action

definition actions-receiv-cases a caller partner msg =(a = IPC PREP (RECV caller partner msg) ∨
a = IPC WAIT (RECV caller partner msg) ∨
a = IPC BUF (RECV caller partner msg) ∨
a = IPC DONE (RECV caller partner msg))

A comparison procedure between actions. Used to indentify actions that can reply to an aborted system
call.

definition actioneq-op a a ′ = (case a of
(IPC PREP (SEND caller partner msg))⇒

(actions-receiv-cases a ′ partner caller msg)

EUROMILS D31.4 Page 148 of 438

D31.4 – Test-Generation Methods

| (IPC PREP (RECV caller partner msg))⇒
(actions-send-cases a ′ partner caller msg)

| (IPC WAIT (SEND caller partner msg))⇒
(actions-receiv-cases a ′ partner caller msg)

| (IPC WAIT (RECV caller partner msg))⇒
(actions-send-cases a ′ partner caller msg)

| (IPC BUF (SEND caller partner msg))⇒
(actions-receiv-cases a ′ partner caller msg)

| (IPC BUF (RECV caller partner msg))⇒
(actions-send-cases a ′ partner caller msg)

| (IPC DONE (SEND caller partner msg))⇒
(actions-receiv-cases a ′ partner caller msg)

| (IPC DONE (RECV caller partner msg))⇒
(actions-send-cases a ′ partner caller msg)

)

A comparison procedure between actions. Used to indentify actions that will be aborted.

definition actioneq a a ′ = (case a of
(IPC PREP (SEND caller partner msg))⇒

(actions-send-cases a ′ caller partner msg)
| (IPC PREP (RECV caller partner msg))⇒

(actions-receiv-cases a ′ caller partner msg)
| (IPC WAIT (SEND caller partner msg))⇒

(actions-send-cases a ′ caller partner msg)
| (IPC WAIT (RECV caller partner msg))⇒

(actions-receiv-cases a ′ caller partner msg)
| (IPC BUF (SEND caller partner msg))⇒

(actions-send-cases a ′ caller partner msg)
| (IPC BUF (RECV caller partner msg))⇒

(actions-receiv-cases a ′ caller partner msg)
| (IPC DONE (SEND caller partner msg))⇒

(actions-send-cases a ′ caller partner msg)
| (IPC DONE (RECV caller partner msg))⇒

(actions-receiv-cases a ′ caller partner msg)
)

4.14.7 Lemmas and simplification rules related to atomic actions
lemma mem-inv1[simp]:

resource (exec-actionid σ (IPC WAIT(SEND caller partener msg))) = resource σ
apply (auto simp : WAIT-SENDid-def)
apply (cases thread-list σ caller,auto)
done

lemma mem-inv2[simp]:
resource (exec-actionid σ (IPC WAIT(RECV caller partener msg))) = resource σ
apply (auto simp : WAIT-RECVid-def)
apply (cases thread-list σ caller,auto)
done

lemma mem-inv3[simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) = resource σ
by (auto simp : PREP-RECVid-def)

lemma mem-inv4[simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) = resource σ
by (auto simp : PREP-SENDid-def)

EUROMILS D31.4 Page 149 of 438

D31.4 – Test-Generation Methods

lemma mem-inv5[simp]:
resource (exec-actionid σ (IPC BUF(RECV caller partner msg))) =
(if ¬ IPC-buf-check-stid caller partner σ
then resource σ
else update-list (resource σ)

(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)))

by (auto simp : BUF-RECVid-def)

lemma mem-inv5-E:
assumes 1: σ ′ = resource (exec-actionid σ (IPC BUF(RECV caller partner msg)))
and 2: ¬ IPC-buf-check-stid caller partner σ =⇒ σ ′ = resource σ =⇒ Q
and 3: IPC-buf-check-stid caller partner σ =⇒

σ ′ = update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)) =⇒ Q

shows Q
proof −

show ?thesis
using 1 unfolding mem-inv5

proof (cases ¬ IPC-buf-check-stid caller partner σ)
case True
show ?thesis
using True 1 unfolding mem-inv5
by (simp, elim 2)

next
case False
show ?thesis
using False 1 unfolding mem-inv5
by (simp, elim 3, simp)

qed
qed

lemma mem-inv6[simp]:
resource (exec-actionid σ (IPC BUF(SEND caller partner msg))) =
(if ¬ IPC-buf-check-stid caller partner σ
then resource σ
else update-list (resource σ)

(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)))

by (auto simp :BUF-SENDid-def)

lemma mem-inv6-E:
assumes 1: σ ′ = resource (exec-actionid σ (IPC BUF(SEND caller partner msg)))
and 2: ¬ IPC-buf-check-stid caller partner σ =⇒ σ ′ = resource σ =⇒ Q
and 3: IPC-buf-check-stid caller partner σ =⇒

σ ′ = update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)) =⇒ Q

shows Q
proof −

show ?thesis
using 1 unfolding mem-inv5

EUROMILS D31.4 Page 150 of 438

D31.4 – Test-Generation Methods

proof (cases ¬ IPC-buf-check-stid caller partner σ)
case True
show ?thesis
using True 1 unfolding mem-inv6
by (simp, elim 2)

next
case False
show ?thesis
using False 1 unfolding mem-inv6
by (simp, elim 3, simp)

qed
qed

lemma mem-inv7[simp]:
resource (exec-actionid σ (IPC DONE(SEND caller partener msg))) = resource σ
by simp

lemma mem-inv8[simp]:
resource (exec-actionid σ (IPC DONE(RECV caller partener msg))) = resource σ
by simp

lemma mem-inv9[simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC PREP(RECV caller partener msg)))

unfolding mem-inv3 mem-inv4
by simp

lemma mem-inv10[simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC WAIT(SEND caller partener msg)))

unfolding mem-inv4 mem-inv1
by simp

lemma mem-inv11[simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC WAIT(RECV caller partener msg)))

unfolding mem-inv2 mem-inv4
by simp

lemma mem-inv12[simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE(SEND caller partener msg)))

unfolding mem-inv4
by simp

lemma mem-inv13[simp]:
resource (exec-actionid σ (IPC PREP(SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE(RECV caller partener msg)))

unfolding mem-inv4
by simp

lemma mem-inv14[simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) =
resource (exec-actionid σ (IPC WAIT(SEND caller partener msg)))

unfolding mem-inv3 mem-inv1
by simp

lemma mem-inv15[simp]:

EUROMILS D31.4 Page 151 of 438

D31.4 – Test-Generation Methods

resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) =
resource (exec-actionid σ (IPC WAIT(RECV caller partener msg)))

unfolding mem-inv2 mem-inv3
by simp

lemma mem-inv16[simp]:
resource (exec-actionid σ (IPC PREP(RECV caller partener msg))) =
resource (exec-actionid σ (IPC DONE(SEND caller partener msg)))

unfolding mem-inv3
by simp

lemma mem-inv17[simp]:
resource (exec-actionid σ (IPC WAIT(SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE(RECV caller partener msg)))

unfolding mem-inv1
by simp

lemma mem-inv18[simp]:
resource (exec-actionid σ (IPC WAIT(SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE(SEND caller partener msg)))

unfolding mem-inv1
by simp

lemma mem-inv19[simp]:
resource (exec-actionid σ (IPC WAIT(RECV caller partener msg))) =
resource (exec-actionid σ (IPC DONE(SEND caller partener msg)))

unfolding mem-inv2
by simp

lemma mem-inv20[simp]:
resource (exec-actionid σ (IPC WAIT(RECV caller partener msg))) =
resource (exec-actionid σ (IPC DONE(RECV caller partener msg)))

unfolding mem-inv2
by simp

lemma mem-inv21[simp]:
resource (exec-actionid σ (IPC DONE(SEND caller partener msg))) =
resource (exec-actionid σ (IPC DONE(RECV caller partener msg)))

by simp

4.14.8 Composition equality on same action

For the general case the order of the executions of PikeOS matter iff executed on the same action, because
the semantics of the execution related to each action is separated

lemma sem-comp-prep-send1:
(out1← PREP-SENDMON a ; PREP-RECVMON a) = (out1← PREP-RECVMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send2:
(out1← PREP-SENDMON a ; WAIT-SENDMON a) = (out1← WAIT-SENDMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send3:

EUROMILS D31.4 Page 152 of 438

D31.4 – Test-Generation Methods

(out1← PREP-SENDMON a ; WAIT-RECVMON a) = (out1← WAIT-RECVMON a ; PREP-SENDMON a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send4:
(out1← PREP-SENDMON a ; BUF-SENDMON a) = (out1← BUF-SENDMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def ,
rule p4-directipc.induct, simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send5:
(out1← PREP-SENDMON a ; BUF-RECVMON a) = (out1← BUF-RECVMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def ,
rule p4-directipc.induct, simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send6:
(out1← PREP-SENDMON a ; MAP-SENDMON a) = (out1← MAP-SENDMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def ,
rule p4-directipc.induct, simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send7:
(out1← PREP-SENDMON a ; MAP-RECVMON a) = (out1← MAP-RECVMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def ,
rule p4-directipc.induct, simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send8:
(out1← PREP-SENDMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send9:
(out1← PREP-SENDMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a ; PREP-SENDMON

a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv2:
(out1← PREP-RECVMON a ; WAIT-SENDMON a) = (out1← WAIT-SENDMON a ; PREP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv3:
(out1← PREP-RECVMON a ; WAIT-RECVMON a) = (out1← WAIT-RECVMON a ; PREP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv4:
(out1← PREP-RECVMON a ; BUF-SENDMON a) = (out1← BUF-SENDMON a ; PREP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

EUROMILS D31.4 Page 153 of 438

D31.4 – Test-Generation Methods

simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv5:
(out1← PREP-RECVMON a ; BUF-RECVMON a) = (out1← BUF-RECVMON a ; PREP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv6:
(out1← PREP-RECVMON a ; MAP-SENDMON a) = (out1← MAP-SENDMON a ; PREP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv7:
(out1← PREP-RECVMON a ; MAP-RECVMON a) = (out1← MAP-RECVMON a ; PREP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv8:
(out1← PREP-RECVMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; PREP-RECVMON

a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv9:
(out1← PREP-RECVMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a ; PREP-RECVMON

a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send4:
(out1← WAIT-SENDMON a ; BUF-SENDMON a) = (out1← BUF-SENDMON a ; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send5:
(out1← WAIT-SENDMON a ; BUF-RECVMON a) = (out1← BUF-RECVMON a ; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send6:
(out1←WAIT-SENDMON a ; MAP-SENDMON a) = (out1← MAP-SENDMON a ; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send7:
(out1← WAIT-SENDMON a ;MAP-RECVMON a) = (out1← MAP-RECVMON a ; WAIT-SENDMON a)

EUROMILS D31.4 Page 154 of 438

D31.4 – Test-Generation Methods

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send8:
(out1←WAIT-SENDMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send9:
(out1← WAIT-SENDMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv4:
(out1← WAIT-RECVMON a ; BUF-SENDMON a) = (out1← BUF-SENDMON a ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv5:
(out1← WAIT-RECVMON a ; BUF-RECVMON a) = (out1← BUF-RECVMON a ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv6:
(out1← WAIT-RECVMON a ; MAP-SENDMON a) = (out1← MAP-SENDMON a ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv7:
(out1← WAIT-RECVMON a ; MAP-RECVMON a) = (out1← MAP-RECVMON a ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv8:
(out1←WAIT-RECVMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv9:
(out1←WAIT-RECVMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,

EUROMILS D31.4 Page 155 of 438

D31.4 – Test-Generation Methods

simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send6:
(out1← BUF-SENDMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; BUF-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send7:
(out1← BUF-SENDMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a; BUF-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send8:
(out1← BUF-SENDMON a ; MAP-SENDMON a) = (out1← MAP-SENDMON a ; BUF-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send9:
(out1← BUF-SENDMON a ; MAP-RECVMON a) = (out1← MAP-RECVMON a ; BUF-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv6:
(out1← BUF-RECVMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; BUF-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv7:
(out1← BUF-RECVMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a ; BUF-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv8:
(out1← BUF-RECVMON a ; MAP-SENDMON a) = (out1← MAP-SENDMON a ; BUF-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv9:
(out1← BUF-RECVMON a ; MAP-RECVMON a) = (out1← MAP-RECVMON a ; BUF-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

EUROMILS D31.4 Page 156 of 438

D31.4 – Test-Generation Methods

lemma sem-comp-map-send6:
(out1← MAP-SENDMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; MAP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send7:
(out1← MAP-SENDMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a ; MAP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send8:
(out1← MAP-SENDMON a ; BUF-SENDMON a) = (out1← BUF-SENDMON a ; MAP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send9:
(out1← MAP-SENDMON a ; BUF-RECVMON a) = (out1← BUF-RECVMON a ; MAP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-recv6:
(out1← MAP-RECVMON a ; DONE-SENDMON a) = (out1← DONE-SENDMON a ; MAP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-recv7:
(out1← MAP-RECVMON a ; DONE-RECVMON a) = (out1← DONE-RECVMON a ; MAP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

4.14.9 Composition equality on different same actions: partial order reduction

For the specific case of IPC protocol the order of the executions of PikeOS does matter iff executed on
different actions, because the semantics of the execution related to each action can react in some cases
on the same field of the state, eg: the field related to erro codes... So the switch between the execution
order related to IPC actions can be done but under some assumptions and only for a subset of actions

lemma sem-comp-prep-send10:
(out1← PREP-SENDMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; PREP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-send11:
(out1← PREP-SENDMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b ; PREP-SENDMON

a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

EUROMILS D31.4 Page 157 of 438

D31.4 – Test-Generation Methods

simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv10:
(out1← PREP-RECVMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; PREP-RECVMON

a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-prep-recv11:
(out1← PREP-RECVMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b ; PREP-RECVMON

a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def split:option.split)

term (resource o snd o the) ((out1← WAIT-SENDMON a ; WAIT-RECVMON b) σ)

lemma WAIT-SENDMON -None: WAIT-SENDMON (IPC WAIT a) σ 6= None
by (induct a, auto simp add: unit-SE-def split:option.split)

lemma WAIT-RECVMON -None: WAIT-RECVMON (IPC WAIT a) σ 6= None
by (induct a, auto simp add: unit-SE-def split:option.split)

lemma sem-comp-wait-send10:
(out1←WAIT-SENDMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-send11:
(out1← WAIT-SENDMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b; WAIT-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv10:
(out1←WAIT-RECVMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-wait-recv11:
(out1←WAIT-RECVMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b ; WAIT-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send10:
(out1← BUF-SENDMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; BUF-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

EUROMILS D31.4 Page 158 of 438

D31.4 – Test-Generation Methods

simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-send11:
(out1← BUF-SENDMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b; BUF-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv10:
(out1← BUF-RECVMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; BUF-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-buf-recv11:
(out1← BUF-RECVMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b ; BUF-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send10:
(out1← MAP-SENDMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; MAP-SENDMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-send11:
(out1← MAP-SENDMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b ; MAP-SENDMON a)
by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,

simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-recv8:
(out1← MAP-RECVMON a ; DONE-SENDMON b) = (out1← DONE-SENDMON b ; MAP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

lemma sem-comp-map-recv9:
(out1← MAP-RECVMON a ; DONE-RECVMON b) = (out1← DONE-RECVMON b ; MAP-RECVMON a)

by (rule ext, induct a, rule p4-stageipc.induct, rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def , rule p4-directipc.induct,
simp-all add: unit-SE-def bind-SE-def split:option.split)

end

theory IPC-traces

imports IPC-atomic-actions

EUROMILS D31.4 Page 159 of 438

D31.4 – Test-Generation Methods

begin

4.15 HOL representation of PikeOS IPC traces

type-synonym traceipc = ACTIONipc list

4.15.1 Execution function for PikeOS IPC traces
definition exec-actionid-Mon
where exec-actionid-Mon = (λactl st. Some (error-codes(exec-actionid st actl),

exec-actionid st actl))

4.15.2 Trace refinement

4.15.3 Execution function for actions with thread ID
lemma (((act-info (th-flag σ)) caller) = None) = (caller /∈dom (act-info (th-flag σ)))

by auto

lemma caller ∈dom (act-info (th-flag σ)) =⇒
the((act-info (th-flag σ)) caller) ∈ ran (act-info (th-flag σ))

by (auto simp: ranI)

abbreviation
get-caller-error caller σ ≡ (the o(act-info o th-flag) σ) caller

abbreviation
remove-caller-error caller σ ≡ σ(|th-flag := (th-flag σ) (|act-info := ((act-info (th-flag σ))

(caller := None))|)
|)

abbreviation
set-caller-partner-error caller partner σ σ ′ out ′≡ σ ′(|th-flag := (th-flag σ)

(|act-info := ((act-info (th-flag σ))
(caller := Some(out ′

(∗just (a,out ′)?∗)
),

partner:= Some (out ′

(∗just (a,out ′)?∗)
)))|)

|)

abbreviation
error-tab-transfer caller σ σ ′ ≡ σ ′(|th-flag := (th-flag σ)|)

abbreviation
set-no-error-preps caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

abbreviation
set-no-error-waits caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

abbreviation
set-no-error-bufs caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

EUROMILS D31.4 Page 160 of 438

D31.4 – Test-Generation Methods

abbreviation
set-no-error-dones caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

abbreviation
set-no-error-prepr caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

abbreviation
set-no-error-waitr caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

abbreviation
set-no-error-bufr caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→NO-ERRORS)|)|)

abbreviation
set-no-error-doner caller partner σ σ ′ msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ NO-ERRORS)|)|)

abbreviation
set-error-mem-preps caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-waits caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-bufs caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-maps caller partner σ σ ′ error-mem msg ≡
σ ′ (|th-flag :=th-flag σ(|act-info := act-info (th-flag σ)(caller 7→ ERROR-MEM error-mem,

partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-dones caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-prepr caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-waitr caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-bufr caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

EUROMILS D31.4 Page 161 of 438

D31.4 – Test-Generation Methods

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-mapr caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-mem-doner caller partner σ σ ′ error-mem msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-MEM error-mem,
partner 7→ ERROR-MEM error-mem)|)|)

abbreviation
set-error-ipc-preps caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-waits caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-bufs caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-maps caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-dones caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-prepr caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-waitr caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-bufr caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-mapr caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

abbreviation
set-error-ipc-doner caller partner σ σ ′ error-ipc msg ≡ σ ′ (|stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)(caller 7→ ERROR-IPC error-ipc,
partner 7→ ERROR-IPC error-ipc)|)|)

EUROMILS D31.4 Page 162 of 438

D31.4 – Test-Generation Methods

fun abortlif t :: (ACTIONipc⇒ (errors, ′a stateid-scheme)MonSE)⇒
(ACTIONipc ⇒ (errors, ′a stateid-scheme)MonSE)

where abortlif t ioprog a σ =
(case a of

(IPC DONE (SEND caller partner msg))⇒
if caller ∈ dom (act-info (th-flag σ)) (∗should add the condition: in which action ID

the error occurs∗)
then Some((the((act-info (th-flag σ)) caller))(∗shoud be: my error∗),

σ(|th-flag := (th-flag σ) (|act-info := ((act-info (th-flag σ))
(caller := None))|)

|))
else (case ioprog a σ of

None⇒ None (∗never happens in our exec fun∗)
| Some(out ′, σ ′)⇒ Some(NO-ERRORS, σ)) (∗execute done∗)

| (IPC DONE (RECV caller partner msg))⇒
if caller ∈ dom (act-info (th-flag σ))
then Some((the((act-info (th-flag σ)) caller))(∗shoud be: my error∗),

σ(|th-flag := (th-flag σ) (|act-info := ((act-info (th-flag σ))
(caller := None))|)

|))
else (case ioprog a σ of

None⇒ None (∗never happens in our exec fun∗)
| Some(out ′, σ ′)⇒ Some(NO-ERRORS, σ)) (∗execute done∗)

| (IPC - (SEND caller partner msg))⇒
if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ(∗should be: my error∗), σ) (∗ purge ∗)
else (case ioprog a σ of

None⇒ None (∗never happens in our exec fun∗)
| Some(NO-ERRORS, σ ′)⇒ Some(NO-ERRORS, error-tab-transfer caller σ σ ′)
| Some(ERROR-MEM error-memory, σ ′)⇒

Some(ERROR-MEM error-memory,
set-caller-partner-error caller partner σ σ ′ (ERROR-MEM error-memory))

| Some(ERROR-IPC error-IPC, σ ′)⇒
Some(ERROR-IPC error-IPC,

set-caller-partner-error caller partner σ σ ′ (ERROR-IPC error-IPC)))
(∗both caller and partner were ′informed ′ to be in error−state.∗)

| (IPC - (RECV caller partner msg))⇒
if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ (∗should be: my error∗), σ) (∗purge∗)
else (case ioprog a σ of

None⇒ None (∗never happens in our exec fun∗)
| Some(NO-ERRORS, σ ′)⇒ Some(NO-ERRORS, error-tab-transfer caller σ σ ′)
| Some(ERROR-MEM error-memory, σ ′)⇒

Some(ERROR-MEM error-memory,
set-caller-partner-error caller partner σ σ ′ (ERROR-MEM error-memory))

| Some(ERROR-IPC error-IPC, σ ′)⇒
Some(ERROR-IPC error-IPC,

set-caller-partner-error caller partner σ σ ′ (ERROR-IPC error-IPC)))
(∗both caller and partner were ′informed ′ to be in error−state.∗)

(∗hypothese: all other atomic actions have no purge∗)
)

EUROMILS D31.4 Page 163 of 438

D31.4 – Test-Generation Methods

lemma exec-actionid-Mon-th-flag0:
a = IPC ipc-stage (ipc-direction) =⇒ ipc-stage 6= DONE =⇒
exec-actionid-Mon a σ = Some (NO-ERRORS,σ ′) =⇒ th-flag σ = th-flag σ ′

unfolding exec-actionid-Mon-def
apply auto
apply (cases ipc-stage)
apply (case-tac ipc-direction)
apply simp-all
unfolding PREP-SENDid-def PREP-RECVid-def
apply simp-all
apply (case-tac ipc-direction)
apply simp-all
unfolding WAIT-SENDid-def
apply simp-all
apply safe
apply (case-tac thread-list σ (a, aa, b))
apply simp-all
unfolding WAIT-RECVid-def
apply simp-all
apply safe
apply simp-all
apply (case-tac thread-list σ (a, aa, b))
apply simp-all
apply (case-tac ipc-direction)
apply simp-all
unfolding BUF-SENDid-def
apply simp-all
unfolding BUF-RECVid-def
apply simp-all
apply (cases ipc-direction)
apply (simp-all add: MAP-SENDid-def MAP-RECVid-def)
done

4.15.4 IPC operations with thread ID

We define an operation as a trace with a given order on atomic actions. For the IPC API we will define
two types of operations, we call the first type request and the second type reply. Following this termino-
logy a given PikeOS thread can request to communicate with another thread or reply to a communication
request. The Isabelle specification of operations is as following:

definition ipc-send-requestid
:: threadid⇒ nat list⇒ threadid⇒ traceipc ((- Bid - Bid/ -) [201, 0, 201] 200)

where
caller Bid msg Bid partner ≡ [IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg)]

definition ipc-recv-requestid
:: threadid⇒ nat list⇒ threadid⇒ traceipc ((- Cid - Cid/ -) [201, 0, 201] 200)

where
caller Cid msg Cid partner ≡ [IPC PREP (RECV caller partner msg),

IPC WAIT (RECV caller partner msg)]

— A thread can do response operation to sending or receiving message response

definition ipc-send-responseid
::threadid⇒ nat list⇒ threadid⇒ traceipc ((- Did - Did/ -) [201, 0, 201] 200)

EUROMILS D31.4 Page 164 of 438

D31.4 – Test-Generation Methods

where
caller Did msg Did partner ≡ [IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC DONE (RECV partner caller msg)]

definition ipc-recv-responseid
::threadid⇒ nat list⇒ threadid⇒ traceipc ((- Eid - Eid/ -) [201, 0, 201] 200)

where
caller Eid msg Eid partner ≡ [IPC PREP (RECV caller partner msg),

IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC DONE (SEND partner caller msg),
IPC DONE (RECV caller partner msg)]

lemmas request-normalizer =
ipc-send-responseid-def ipc-recv-responseid-def ipc-send-requestid-def ipc-recv-requestid-def

4.15.5 IPC operations with free variables
abbreviation ipc-send-request ((- B - B/ -) [201, 0, 201] 200)
where caller B msg B partner ≡ [IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg)]

abbreviation ipc-recv-request ((- C - C/ -) [201, 0, 201] 200)
where caller C msg C partner ≡ [IPC PREP (RECV caller partner msg),

IPC WAIT (RECV caller partner msg)]

abbreviation ipc-send-response ((- D - D/ -) [201, 0, 201] 200)
where caller D msg D partner ≡ [IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC DONE (RECV partner caller msg)]

abbreviation ipc-recv-response ((- E - E/ -) [201, 0, 201] 200)
where

caller E msg E partner ≡ [IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (SEND partner caller msg),
IPC DONE (RECV caller partner msg)]

4.15.6 Pridicates on operations
definition is-ipc-trace
where is-ipc-trace actl = (∀ a∈set(actl::traceipc).∃ caller partner msg.

a = IPC PREP (RECV caller partner msg)∨
a = IPC WAIT (RECV caller partner msg)∨
a = IPC BUF (RECV caller partner msg)∨
a = IPC DONE (RECV caller partner msg)∨
a = IPC PREP (SEND caller partner msg)∨
a = IPC WAIT (SEND caller partner msg)∨
a = IPC BUF (SEND caller partner msg)∨
a = IPC DONE (SEND caller partner msg))

EUROMILS D31.4 Page 165 of 438

D31.4 – Test-Generation Methods

definition is-ipc-traceid
where is-ipc-traceid actl = (∀ a∈set(actl::traceipc).∃ caller partner msg.

a = IPC PREP (RECV caller partner msg)∨
a = IPC WAIT (RECV caller partner msg)∨
a = IPC BUF (RECV caller partner msg)∨
a = IPC DONE (RECV caller partner msg)∨
a = IPC PREP (SEND caller partner msg)∨
a = IPC WAIT (SEND caller partner msg)∨
a = IPC BUF (SEND caller partner msg)∨
a = IPC DONE (SEND caller partner msg))

4.15.7 Simplification rules related to traces
lemma prep-send-comp-mbind-eq2:

mbind is (λa. (out1← PREP-SENDMON a ; PREP-RECVMON a)) σ =
mbind is (λa. (out1← PREP-RECVMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send1)

lemma prep-send-comp-mbind-eq3:
mbind is (λa. (out1← PREP-SENDMON a ; WAIT-SENDMON a)) σ =
mbind is (λa. (out1← WAIT-SENDMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send2)

lemma prep-send-comp-mbind-eq4:
mbind is (λa. (out1← PREP-SENDMON a ; WAIT-RECVMON a)) σ =
mbind is (λa. (out1← WAIT-RECVMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send3)

lemma prep-send-comp-mbind-eq5:
mbind is (λa. (out1← PREP-SENDMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1← BUF-SENDMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send4)

lemma prep-send-comp-mbind-eq6:
mbind is (λa. (out1← PREP-SENDMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1← BUF-RECVMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send5)

lemma prep-send-comp-mbind-eq7:
mbind is (λa. (out1← PREP-SENDMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1← MAP-SENDMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send6)

lemma prep-send-comp-mbind-eq8:
mbind is (λa. (out1← PREP-SENDMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1← MAP-RECVMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send7)

lemma prep-send-comp-mbind-eq9:
mbind is (λa. (out1← PREP-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send8)

lemma prep-send-comp-mbind-eq10:
mbind is (λa. (out1← PREP-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; PREP-SENDMON a)) σ

by (simp only: sem-comp-prep-send9)

EUROMILS D31.4 Page 166 of 438

D31.4 – Test-Generation Methods

lemma prep-recv-comp-mbind-eq1:
mbind is (λa. (out1← PREP-RECVMON a ; WAIT-SENDMON a)) σ =
mbind is (λa. (out1← WAIT-SENDMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv2)

lemma prep-recv-comp-mbind-eq2:
mbind is (λa. (out1← PREP-RECVMON a ; WAIT-RECVMON a)) σ =
mbind is (λa. (out1← WAIT-RECVMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv3)

lemma prep-recv-comp-mbind-eq3:
mbind is (λa. (out1← PREP-RECVMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1← BUF-SENDMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv4)

lemma prep-recv-comp-mbind-eq4:
mbind is (λa. (out1← PREP-RECVMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1← BUF-RECVMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv5)

lemma prep-recv-comp-mbind-eq5:
mbind is (λa. (out1← PREP-RECVMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1← MAP-SENDMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv6)

lemma prep-recv-comp-mbind-eq6:
mbind is (λa. (out1← PREP-RECVMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1← MAP-RECVMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv7)

lemma prep-recv-comp-mbind-eq7:
mbind is (λa. (out1← PREP-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv8)

lemma prep-recv-comp-mbind-eq8:
mbind is (λa. (out1← PREP-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; PREP-RECVMON a)) σ

by (simp only: sem-comp-prep-recv9)

lemma wait-send-comp-mbind-eq1:
mbind is (λa. (out1← WAIT-SENDMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1← BUF-SENDMON a ; WAIT-SENDMON a)) σ

by (simp only: sem-comp-wait-send4)

lemma wait-send-comp-mbind-eq2:
mbind is (λa. (out1← WAIT-SENDMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1← BUF-RECVMON a ; WAIT-SENDMON a)) σ

by (simp only: sem-comp-wait-send5)

lemma wait-send-comp-mbind-eq3:
mbind is (λa. (out1← WAIT-SENDMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1← MAP-SENDMON a ; WAIT-SENDMON a)) σ

EUROMILS D31.4 Page 167 of 438

D31.4 – Test-Generation Methods

by (simp only: sem-comp-wait-send6)

lemma wait-send-comp-mbind-eq4:
mbind is (λa. (out1← WAIT-SENDMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1← MAP-RECVMON a ; WAIT-SENDMON a)) σ

by (simp only: sem-comp-wait-send7)

lemma wait-send-comp-mbind-eq5:
mbind is (λa. (out1← WAIT-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; WAIT-SENDMON a)) σ

by (simp only: sem-comp-wait-send8)

lemma wait-send-comp-mbind-eq6:
mbind is (λa. (out1← WAIT-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; WAIT-SENDMON a)) σ

by (simp only: sem-comp-wait-send9)

lemma wait-recv-comp-mbind-eq1:
mbind is (λa. (out1← WAIT-RECVMON a ; BUF-SENDMON a)) σ =
mbind is (λa. (out1← BUF-SENDMON a ; WAIT-RECVMON a)) σ

by (simp only: sem-comp-wait-recv4)

lemma wait-recv-comp-mbind-eq2:
mbind is (λa. (out1← WAIT-RECVMON a ; BUF-RECVMON a)) σ =
mbind is (λa. (out1← BUF-RECVMON a ; WAIT-RECVMON a)) σ

by (simp only: sem-comp-wait-recv5)

lemma wait-recv-comp-mbind-eq3:
mbind is (λa. (out1← WAIT-RECVMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1← MAP-SENDMON a ; WAIT-RECVMON a)) σ

by (simp only: sem-comp-wait-recv6)

lemma wait-recv-comp-mbind-eq4:
mbind is (λa. (out1← WAIT-RECVMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1← MAP-RECVMON a ; WAIT-RECVMON a)) σ

by (simp only: sem-comp-wait-recv7)

lemma wait-recv-comp-mbind-eq5:
mbind is (λa. (out1← WAIT-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; WAIT-RECVMON a)) σ

by (simp only: sem-comp-wait-recv8)

lemma wait-recv-comp-mbind-eq6:
mbind is (λa. (out1← WAIT-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; WAIT-RECVMON a)) σ

by (simp only: sem-comp-wait-recv9)

lemma buf-send-comp-mbind-eq1:
mbind is (λa. (out1← BUF-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; BUF-SENDMON a)) σ

by (simp only: sem-comp-buf-send6)

EUROMILS D31.4 Page 168 of 438

D31.4 – Test-Generation Methods

lemma buf-send-comp-mbind-eq2:
mbind is (λa. (out1← BUF-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; BUF-SENDMON a)) σ

by (simp only: sem-comp-buf-send7)

lemma buf-send-comp-mbind-eq3:
mbind is (λa. (out1← BUF-SENDMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1← MAP-SENDMON a ; BUF-SENDMON a)) σ

by (simp only: sem-comp-buf-send8)

lemma buf-send-comp-mbind-eq4:
mbind is (λa. (out1← BUF-SENDMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1← MAP-RECVMON a ; BUF-SENDMON a)) σ

by (simp only: sem-comp-buf-send9)

lemma map-send-comp-mbind-eq1:
mbind is (λa. (out1← MAP-SENDMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; MAP-SENDMON a)) σ

by (simp only: sem-comp-map-send6)

lemma map-send-comp-mbind-eq2:
mbind is (λa. (out1← MAP-SENDMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; MAP-SENDMON a)) σ

by (simp only: sem-comp-map-send7)

lemma buf-recv-comp-mbind-eq1:
mbind is (λa. (out1← BUF-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; BUF-RECVMON a)) σ

by (simp only: sem-comp-buf-recv6)

lemma buf-recv-comp-mbind-eq2:
mbind is (λa. (out1← BUF-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; BUF-RECVMON a)) σ

by (simp only: sem-comp-buf-recv7)

lemma buf-recv-comp-mbind-eq3:
mbind is (λa. (out1← BUF-RECVMON a ; MAP-SENDMON a)) σ =
mbind is (λa. (out1← MAP-SENDMON a ; BUF-RECVMON a)) σ

by (simp only: sem-comp-buf-recv8)

lemma buf-recv-comp-mbind-eq4:
mbind is (λa. (out1← BUF-RECVMON a ; MAP-RECVMON a)) σ =
mbind is (λa. (out1← MAP-RECVMON a ; BUF-RECVMON a)) σ

by (simp only: sem-comp-buf-recv9)

lemma map-recv-comp-mbind-eq1:
mbind is (λa. (out1← MAP-RECVMON a ; DONE-SENDMON a)) σ =
mbind is (λa. (out1← DONE-SENDMON a ; MAP-RECVMON a)) σ

by (simp only: sem-comp-map-recv6)

lemma map-recv-comp-mbind-eq2:
mbind is (λa. (out1← MAP-RECVMON a ; DONE-RECVMON a)) σ =
mbind is (λa. (out1← DONE-RECVMON a ; MAP-RECVMON a)) σ

by (simp only: sem-comp-map-recv7)

EUROMILS D31.4 Page 169 of 438

D31.4 – Test-Generation Methods

end

theory IPC-step-normalizer

imports IPC-traces

begin

4.16 IPC Stepping Function and Traces

definition
exec-actionid-Mon-prep-fact0 caller partner σ msg =
(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)

definition
exec-actionid-Mon-prep-fact1 caller partner σ =
(¬IPC-params-c1 ((the o thread-list σ) partner) −→
(IPC-params-c2 ((the o thread-list σ) partner) ∧
IPC-params-c6 caller ((the o thread-list σ) partner)))

definition
exec-actionid-Mon-prep-fact2 caller partner σ =
(¬IPC-params-c1 ((the o thread-list σ) partner) ∧

IPC-params-c2 ((the o thread-list σ) partner)∧
¬IPC-params-c6 caller ((the o thread-list σ) partner))

definition
exec-actionid-Mon-prep-send-fact3 caller error-mem σ msg =
(¬(list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧

error-mem = not-valid-sender-addr-in-PREP-SEND)

definition
exec-actionid-Mon-prep-send-fact4 caller partner error-mem σ msg =
((list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧
¬(list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg) ∧
error-mem = not-valid-receiver-addr-in-PREP-SEND)

definition
exec-actionid-Mon-prep-recv-fact3 caller error-mem σ msg =
(¬(list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧

error-mem = not-valid-sender-addr-in-PREP-RECV)

definition
exec-actionid-Mon-prep-recv-fact4 caller partner error-mem σ msg =

((list-all ((is-part-addr-th-mem o the) ((thread-list σ) caller) (resource σ))msg) ∧
¬(list-all ((is-part-mem-th o the) ((thread-list σ) partner) (resource σ))msg) ∧
error-mem = not-valid-receiver-addr-in-PREP-RECV)

definition
exec-actionid-Mon-prep-fact5 caller partner σ =
(¬IPC-params-c1 ((the o thread-list σ) partner)∨
(IPC-params-c2 ((the o thread-list σ) partner)∧
IPC-params-c4 caller partner) ∧
IPC-params-c3 ((the o thread-list σ) partner))

definition

EUROMILS D31.4 Page 170 of 438

D31.4 – Test-Generation Methods

exec-actionid-Mon-prep-fact6 caller partner σ =
(¬IPC-params-c1 ((the o thread-list σ) partner)∨
(IPC-params-c2 ((the o thread-list σ) partner)∧
IPC-params-c4 caller partner) ∧
¬IPC-params-c3 ((the o thread-list σ) partner))

definition
exec-actionid-Mon-prep-fact7 caller partner σ =
(¬IPC-params-c1 ((the o thread-list σ) partner)∨
(IPC-params-c2 ((the o thread-list σ) partner)∧
IPC-params-c4 caller partner))

4.16.1 Simplification rules related to the stepping function exec-actionid-Mon

lemma exec-actionid-Mon-mbind-obvious:∧
σ S. mbind S (abortlif t exec-actionid-Mon) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-mbind-obvious ′:
(case mbind S (abortlif t exec-actionid-Mon) σ of

None⇒ Some ([get-caller-error caller σ], σ)
| Some (outs, σ ′′)⇒ a) = a

proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
by simp

qed

lemma exec-actionid-Mon-all-obvious1:
∀ a σ.∃ errors σ ′. exec-actionid-Mon a σ = Some (errors, σ ′)
by (auto, rule actionipc.induct, auto simp:exec-actionid-Mon-def)

Simplification rules on PREP action

lemma exec-actionid-Mon-prep-send-obvious0:∧
σ. exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-prep-send-obvious1:
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ) =
(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then Some (NO-ERRORS,

σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

EUROMILS D31.4 Page 171 of 438

D31.4 – Test-Generation Methods

else
if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then Some (NO-ERRORS,

σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

else
Some(ERROR-IPC error-IPC-22-in-PREP-SEND,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|))

else Some (ERROR-IPC error-IPC-23-in-PREP-SEND,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|))

else Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)))

by (simp add: exec-actionid-Mon-def PREP-SENDid-def)

lemma exec-actionid-Mon-prep-send-obvious2:
(fst o the)(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ) =
(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then NO-ERRORS
else
(if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then NO-ERRORS
else

ERROR-IPC error-IPC-22-in-PREP-SEND
else ERROR-IPC error-IPC-23-in-PREP-SEND)

else ERROR-MEM not-valid-sender-addr-in-PREP-SEND)
by (simp add:exec-actionid-Mon-def PREP-SENDid-def)

lemma exec-actionid-Mon-prep-send-obvious3:
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)) =
(σ ′= σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ)

by (auto simp add: exec-actionid-Mon-def PREP-SENDid-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def

split: errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-send-obvious4:
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)) =
((σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)∧

EUROMILS D31.4 Page 172 of 438

D31.4 – Test-Generation Methods

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-mem = not-valid-sender-addr-in-PREP-SEND))

by (auto simp add: exec-actionid-Mon-def PREP-SENDid-def
split: errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-send-obvious5:
(exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)) =
((σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬ IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-SEND) ∨

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬ IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-SEND))

by (auto simp add: exec-actionid-Mon-def PREP-SENDid-def exec-actionid-Mon-prep-fact2-def
exec-actionid-Mon-prep-fact0-def

split: errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-recv-obvious0:
∀σ. exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-prep-recv-obvious1:
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ) =
(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then Some(NO-ERRORS,

σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

else
(if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then Some(NO-ERRORS,

σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

else
Some(ERROR-IPC error-IPC-22-in-PREP-RECV,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|))

EUROMILS D31.4 Page 173 of 438

D31.4 – Test-Generation Methods

else Some(ERROR-IPC error-IPC-23-in-PREP-RECV,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)))

else Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|)))

by(simp add: exec-actionid-Mon-def PREP-RECVid-def)

lemma exec-actionid-Mon-prep-recv-obvious2:
fst(the(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ)) =
(if (list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)
then

if IPC-params-c1 ((the o thread-list σ) partner)
then NO-ERRORS
else
(if IPC-params-c2 ((the o thread-list σ) partner)
then

if IPC-params-c6 caller ((the o thread-list σ) partner)
then NO-ERRORS
else

ERROR-IPC error-IPC-22-in-PREP-RECV
else ERROR-IPC error-IPC-23-in-PREP-RECV)

else ERROR-MEM not-valid-receiver-addr-in-PREP-RECV)
unfolding exec-actionid-Mon-def
by (simp add: exec-actionid-Mon-def PREP-RECVid-def)

lemma exec-actionid-Mon-prep-recv-obvious3:
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)) =
(σ ′= σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg∧
exec-actionid-Mon-prep-fact1 caller partner σ)

by (auto simp add: exec-actionid-Mon-def PREP-RECVid-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def

split: errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-recv-obvious4:
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)) =
((σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|)∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-mem = not-valid-receiver-addr-in-PREP-RECV))

by (auto simp add: exec-actionid-Mon-def PREP-RECVid-def
split: errors.split split-if split-if-asm)

lemma exec-actionid-Mon-prep-recv-obvious5:
(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)) =
((σ ′=σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧

EUROMILS D31.4 Page 174 of 438

D31.4 – Test-Generation Methods

¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-RECV) ∨

(σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬ IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-RECV))

by (auto simp add: exec-actionid-Mon-def PREP-RECVid-def exec-actionid-Mon-prep-fact2-def
exec-actionid-Mon-prep-fact0-def

split: errors.split split-if split-if-asm)

Simplification rules on WAIT action

lemma exec-actionid-Mon-wait-send-obvious0:∧
σ. exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

definition
exec-actionid-Mon-wait-send-upd caller σ =
(case (thread-list σ) caller of None⇒
σ (|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND|)

| Some th⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|))

lemma exec-actionid-Mon-wait-send-obvious1:
(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ) =
(if ¬ IPC-send-comm-check-stid caller partner σ
then Some(ERROR-IPC error-IPC-1-in-WAIT-SEND ,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|))

else
if ¬ IPC-params-c4 caller partner
then Some(ERROR-IPC error-IPC-3-in-WAIT-SEND,

σ (|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|)

)
else

if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒

Some (ERROR-IPC error-IPC-6-in-WAIT-SEND ,
σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND|))

| Some th⇒ Some (ERROR-IPC error-IPC-5-in-WAIT-SEND ,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),

EUROMILS D31.4 Page 175 of 438

D31.4 – Test-Generation Methods

error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|)))
else

Some(NO-ERRORS,
σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|)))

by (simp add: exec-actionid-Mon-def WAIT-SENDid-def list.induct split: option.split)

lemma exec-actionid-Mon-wait-send-obvious2:
fst (the(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ)) =
(if ¬ IPC-send-comm-check-stid caller partner σ
then ERROR-IPC error-IPC-1-in-WAIT-SEND
else

if ¬ IPC-params-c4 caller partner
then ERROR-IPC error-IPC-3-in-WAIT-SEND
else

if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒

ERROR-IPC error-IPC-6-in-WAIT-SEND
| Some th⇒ ERROR-IPC error-IPC-5-in-WAIT-SEND)

else
NO-ERRORS)

by (simp add: exec-actionid-Mon-def WAIT-SENDid-def list.induct
split: option.split)

lemma exec-actionid-Mon-wait-send-obvious3:
(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

IPC-send-comm-check-stid caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ)

by (auto simp add: exec-actionid-Mon-def WAIT-SENDid-def split: option.split-asm)

definition
update-state-wait-send-params5 σ caller =

(case (thread-list σ) caller of None ⇒
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND|)

| Some th⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND|))

definition
update-state-wait-recv-params5 σ caller =

(case (thread-list σ) caller of None ⇒
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV|)

| Some th⇒ σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV|))

EUROMILS D31.4 Page 176 of 438

D31.4 – Test-Generation Methods

lemma exec-actionid-Mon-wait-send-obvious4:
(exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)) =
((¬ IPC-send-comm-check-stid caller partner σ −→

σ ′= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|) ∧

error-IPC = error-IPC-1-in-WAIT-SEND) ∧
(IPC-send-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→
σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|) ∧

error-IPC = error-IPC-3-in-WAIT-SEND) ∧
(IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→
σ ′= update-state-wait-send-params5 σ caller ∧

error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC error-IPC) ∧
¬ IPC-params-c5 partner σ)))))

by (auto simp add: update-state-wait-send-params5-def exec-actionid-Mon-def WAIT-SENDid-def
split: split-if-asm option.split-asm)

lemma exec-actionid-Mon-wait-recv-obvious0:∧
σ. exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-wait-recv-obvious1:
(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ) =
(if ¬ IPC-recv-comm-check-stid caller partner σ
then Some(ERROR-IPC error-IPC-1-in-WAIT-RECV,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|))

else
if ¬ IPC-params-c4 caller partner
then Some(ERROR-IPC error-IPC-3-in-WAIT-RECV,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|))

else
if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒

Some(ERROR-IPC error-IPC-6-in-WAIT-RECV,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV|))

| Some th⇒ Some(ERROR-IPC error-IPC-5-in-WAIT-RECV,
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV|)))

else
Some(NO-ERRORS,

EUROMILS D31.4 Page 177 of 438

D31.4 – Test-Generation Methods

σ(|current-thread := caller ,
thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|)))

by (simp add: exec-actionid-Mon-def WAIT-RECVid-def list.induct split: option.split)

lemma exec-actionid-Mon-wait-recv-obvious2:
fst(the(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ)) =
(if ¬ IPC-recv-comm-check-stid caller partner σ
then ERROR-IPC error-IPC-1-in-WAIT-RECV
else

if ¬ IPC-params-c4 caller partner
then ERROR-IPC error-IPC-3-in-WAIT-RECV
else

if ¬ IPC-params-c5 partner σ
then
(case (thread-list σ) caller of None⇒

ERROR-IPC error-IPC-6-in-WAIT-RECV
| Some th⇒ ERROR-IPC error-IPC-5-in-WAIT-RECV)

else
NO-ERRORS)

by (simp add: exec-actionid-Mon-def WAIT-RECVid-def list.induct split: option.split)

lemma exec-actionid-Mon-wait-recv-obvious3:
(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

IPC-recv-comm-check-stid caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ)

by (auto simp add: exec-actionid-Mon-def WAIT-RECVid-def split: list.split-asm)

lemma exec-actionid-Mon-wait-recv-obvious4:
(exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)) =
((¬ IPC-recv-comm-check-stid caller partner σ −→

σ ′=σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|) ∧

error-IPC = error-IPC-1-in-WAIT-RECV) ∧
(IPC-recv-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→
σ ′= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|) ∧

error-IPC = error-IPC-3-in-WAIT-RECV) ∧
(IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→
σ ′= update-state-wait-recv-params5 σ caller ∧

error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC) ∧
¬ IPC-params-c5 partner σ)))))

by (auto simp add: update-state-wait-recv-params5-def exec-actionid-Mon-def WAIT-RECVid-def
split: split-if-asm list.split-asm)

Simplification rules on BUF action

lemma exec-actionid-Mon-buf-send-obvious0:

EUROMILS D31.4 Page 178 of 438

D31.4 – Test-Generation Methods

∧
σ. exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-buf-send-obvious1:
(exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ) =
(if ¬ IPC-buf-check-stid caller partner σ
then Some (ERROR-IPC error-IPC-1-in-BUF-SEND,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND|))

else
Some(NO-ERRORS,
σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)))
by (simp add: exec-actionid-Mon-def BUF-SENDid-def)

lemma exec-actionid-Mon-buf-send-obvious2:
fst (the(exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ)) =
(if ¬ IPC-buf-check-stid caller partner σ
then ERROR-IPC error-IPC-1-in-BUF-SEND
else NO-ERRORS)

by (simp add: exec-actionid-Mon-def BUF-SENDid-def)

lemma exec-actionid-Mon-buf-send-obvious3:
(exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some(error, σ ′)) =
((¬ IPC-buf-check-stid caller partner σ −→
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND|) ∧

error = ERROR-IPC error-IPC-1-in-BUF-SEND) ∧
(IPC-buf-check-stid caller partner σ −→
(σ ′ = σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|) ∧
error =NO-ERRORS)))

by (auto simp add: exec-actionid-Mon-def BUF-SENDid-def)

EUROMILS D31.4 Page 179 of 438

D31.4 – Test-Generation Methods

lemma exec-actionid-Mon-buf-recv-obvious0:
∀σ. exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ 6= None
unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-buf-recv-obvious1:
(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ) =
(if ¬ IPC-buf-check-stid caller partner σ
then Some (ERROR-IPC error-IPC-1-in-BUF-RECV,

σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|))

else
Some(NO-ERRORS,

(σ(|current-thread := caller,
resource := update-list (resource σ)

(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))))
by (simp add: exec-actionid-Mon-def BUF-RECVid-def)

lemma exec-actionid-Mon-buf-recv-obvious2:
fst(the(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ)) =
(if ¬ IPC-buf-check-stid caller partner σ
then ERROR-IPC error-IPC-1-in-BUF-RECV
else NO-ERRORS)

by (simp add: exec-actionid-Mon-def BUF-RECVid-def)

lemma exec-actionid-Mon-buf-recv-obvious3:
(exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some(error, σ ′)) =
((¬ IPC-buf-check-stid caller partner σ −→
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|) ∧

error = ERROR-IPC error-IPC-1-in-BUF-RECV) ∧
(IPC-buf-check-stid caller partner σ −→
(σ ′ = σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|) ∧
error =NO-ERRORS)))

by (auto simp add: exec-actionid-Mon-def BUF-RECVid-def)

EUROMILS D31.4 Page 180 of 438

D31.4 – Test-Generation Methods

Simplification rules on MAP action

lemma exec-actionid-Mon-map-send-obvious0:∧
σ. exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-map-send-obvious1:
(exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ) =

Some(NO-ERRORS,
σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
by (simp add: exec-actionid-Mon-def MAP-SENDid-def)

lemma exec-actionid-Mon-map-send-obvious2:
fst (the(exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ)) = NO-ERRORS
by (simp add: exec-actionid-Mon-def MAP-SENDid-def)

lemma exec-actionid-Mon-map-send-obvious3:
(exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ = Some(error, σ ′)) =

(σ ′ = σ(|current-thread := caller,
resource := init-share-list (resource σ)

(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|) ∧
error =NO-ERRORS)

by (auto simp add: exec-actionid-Mon-def MAP-SENDid-def)

lemma exec-actionid-Mon-map-recv-obvious0:∧
σ. exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-map-recv-obvious1:
(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ) =

Some(NO-ERRORS,
σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

EUROMILS D31.4 Page 181 of 438

D31.4 – Test-Generation Methods

error-codes := NO-ERRORS|))
by (simp add: exec-actionid-Mon-def MAP-RECVid-def)

lemma exec-actionid-Mon-map-recv-obvious2:
fst (the(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ)) = NO-ERRORS
by (simp add: exec-actionid-Mon-def MAP-RECVid-def)

lemma exec-actionid-Mon-map-recv-obvious3:
(exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ = Some(error, σ ′)) =

(σ ′ = σ(|current-thread := caller,
resource := init-share-list (resource σ)

(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|) ∧
error =NO-ERRORS)

by (auto simp add: exec-actionid-Mon-def MAP-RECVid-def)

Simplification rules on DONE action

lemma exec-actionid-Mon-done-send-obvious0:
∀σ. exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ 6= None
unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-send-obvious1:
(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ) =
Some(error-codes σ, σ)

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-send-obvious2:
fst (the(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ)) =

error-codes σ
unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-send-obvious3:
(exec-actionid-Mon (IPC DONE (SEND caller partner msg)) σ = Some(error, σ ′)) =
(σ ′= σ ∧ error-codes σ = error)
by (auto simp add: exec-actionid-Mon-def)

lemma exec-actionid-Mon-done-recv-obvious0:∧
σ. exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ 6= None

unfolding exec-actionid-Mon-def
by simp

EUROMILS D31.4 Page 182 of 438

D31.4 – Test-Generation Methods

lemma exec-actionid-Mon-done-recv-obvious1:
(exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ) =
Some(error-codes σ, σ)

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-recv-obvious2:
fst(the(exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ)) =
error-codes σ

unfolding exec-actionid-Mon-def
by simp

lemma exec-actionid-Mon-done-recv-obvious3:
(exec-actionid-Mon (IPC DONE (RECV caller partner msg)) σ = Some(error, σ ′)) =
(σ ′= σ ∧ error-codes σ = error)
by (auto simp add: exec-actionid-Mon-def)

lemma exec-actionid-Mon-act-info-obvious0:
(exec-actionid-Mon a σ = Some(error, σ ′)) =⇒
(act-info (stateid.th-flag σ) = act-info (stateid.th-flag σ ′))
unfolding exec-actionid-Mon-def
by (auto, rule actionipc.induct , rule p4-stageipc.induct,rule p4-directipc.induct,

auto, rule actionipc.induct, simp-all, rule p4-stageipc.induct, rule p4-directipc.induct,
auto simp: PREP-SENDid-def PREP-RECVid-def ,rule p4-directipc.induct, auto,
simp add: WAIT-SENDid-def split: option.split, simp add: WAIT-RECVid-def split: option.split,
rule p4-directipc.induct, auto simp add: BUF-SENDid-def BUF-RECVid-def ,
rule p4-directipc.induct,auto simp add: MAP-SENDid-def MAP-RECVid-def ,
rule p4-directipc.induct, auto)

lemma exec-actionid-Mon-act-info-obvious0 ′:
(exec-actionid-Mon a σ = Some(error, σ ′)) =
(act-info (stateid.th-flag σ) = act-info (stateid.th-flag σ ′) ∧
error-codes (exec-actionid σ a) = error ∧ exec-actionid σ a = σ ′)

unfolding exec-actionid-Mon-def
by (auto, rule actionipc.induct , rule p4-stageipc.induct,rule p4-directipc.induct,

auto, rule actionipc.induct, simp-all, rule p4-stageipc.induct, rule p4-directipc.induct,
auto simp: PREP-SENDid-def PREP-RECVid-def ,rule p4-directipc.induct, auto,
simp add: WAIT-SENDid-def split: option.split, simp add: WAIT-RECVid-def split: option.split,
rule p4-directipc.induct, auto simp add: BUF-SENDid-def BUF-RECVid-def ,
rule p4-directipc.induct,auto simp add: MAP-SENDid-def MAP-RECVid-def ,
rule p4-directipc.induct, auto)

lemma exec-actionid-Mon-act-info-obvious1:
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some(error, σ ′) =⇒
act-info (stateid.th-flag σ) caller= act-info (stateid.th-flag σ ′) caller

by (auto simp:exec-actionid-Mon-def PREP-RECVid-def)

lemma exec-actionid-Mon-act-info-obvious2:act-info (stateid.th-flag σ) caller =
act-info(th-flag(snd(the(exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ)))) caller

unfolding exec-actionid-Mon-def

EUROMILS D31.4 Page 183 of 438

D31.4 – Test-Generation Methods

by (simp add: PREP-RECVid-def)

lemma exec-errors-obvious0: (exec-actionid-Mon a σ) = Some (NO-ERRORS,σ ′) =⇒
error-codes σ ′ = NO-ERRORS

by (auto simp only: exec-actionid-Mon-def prod.inject the.simps)

lemma exec-errors-obvious1: (exec-actionid-Mon a σ) = Some (NO-ERRORS,σ ′) =⇒
error-codes σ ′ 6= ERROR-MEM error-mem

by (auto simp only: exec-actionid-Mon-def prod.inject the.simps)

lemma exec-errors-obvious2: (exec-actionid-Mon a σ) = Some (NO-ERRORS,σ ′) =⇒
error-codes σ ′ 6= ERROR-IPC error-ipc

by (auto simp only: exec-actionid-Mon-def prod.inject the.simps)

lemmas step-normalizer-None =
exec-actionid-Mon-prep-send-obvious0 exec-actionid-Mon-prep-recv-obvious0
exec-actionid-Mon-wait-send-obvious0 exec-actionid-Mon-wait-recv-obvious0
exec-actionid-Mon-buf-send-obvious0 exec-actionid-Mon-buf-recv-obvious0
exec-actionid-Mon-done-send-obvious0 exec-actionid-Mon-done-recv-obvious0

lemmas step-normalizer-Some = exec-actionid-Mon-act-info-obvious0 ′

end

theory IPC-atomic-action-normalizer

imports IPC-step-normalizer

begin

4.17 Atomic Actions Reasoning

4.17.1 Symbolic Execution Rules of Atomic Actions
lemma prep-send-obvious:

(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =σ ′) =
(((σ ′ = σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ))∨

((¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
σ ′ =σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)))∨

((σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner)) ∨

(σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),

EUROMILS D31.4 Page 184 of 438

D31.4 – Test-Generation Methods

error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|) ∧
exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner))))

by (auto simp add: PREP-SENDid-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def
exec-actionid-Mon-prep-fact2-def)

lemma wait-send-obvious:
(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)) = σ ′) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

IPC-send-comm-check-stid caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ) ∨

((¬ IPC-send-comm-check-stid caller partner σ −→
σ ′= σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|)) ∧

(IPC-send-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→
σ ′= σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|)))))

by (auto simp add: update-state-wait-send-params5-def WAIT-SENDid-def
split: split-if-asm option.split-asm)

lemma buf-send-obvious:
(BUF-SENDid σ (IPC BUF (SEND caller partner msg)) = σ ′) =
((¬ IPC-buf-check-stid caller partner σ −→
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND|)) ∧

(IPC-buf-check-stid caller partner σ −→
(σ ′ = σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))))
by (auto simp add:BUF-SENDid-def)

lemma map-send-obvious:
(MAP-SENDid σ (IPC MAP (SEND caller partner msg)) = σ ′) =
(σ ′ = σ(|current-thread := caller,

resource := init-share-list (resource σ)

EUROMILS D31.4 Page 185 of 438

D31.4 – Test-Generation Methods

(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
by (auto simp add: MAP-SENDid-def)

lemma prep-recv-obvious:
(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =σ ′) =
(((σ ′ = σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ))∨

((¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|)))∨

((σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner)) ∨

(σ ′ = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|) ∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner))))

by (auto simp add: PREP-RECVid-def exec-actionid-Mon-prep-fact2-def
exec-actionid-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def)

lemma wait-recv-obvious:
(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)) = σ ′) =
(σ ′= σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|) ∧

IPC-recv-comm-check-stid caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ) ∨

((¬ IPC-recv-comm-check-stid caller partner σ −→
σ ′= σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|)) ∧

(IPC-recv-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→

EUROMILS D31.4 Page 186 of 438

D31.4 – Test-Generation Methods

σ ′= σ (|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|)))))

by (auto simp add: update-state-wait-recv-params5-def WAIT-RECVid-def
split: split-if-asm)

lemma buf-recv-obvious:
(BUF-RECVid σ (IPC BUF (RECV caller partner msg)) = σ ′) =
((¬ IPC-buf-check-stid caller partner σ −→
σ ′ = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|)) ∧

(IPC-buf-check-stid caller partner σ −→
(σ ′ = σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))))
by (auto simp add: BUF-RECVid-def)

lemma map-recv-obvious:
(MAP-RECVid σ (IPC MAP (RECV caller partner msg)) = σ ′) =
(σ ′ = σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
by (auto simp add: MAP-RECVid-def)

4.17.2 Symbolic Execution Rules for Error Codes Field
lemma PREP-SENDid-obvious0:

(error-codes (PREP-SENDid σ (IPC PREP (SEND caller partner msg))) = NO-ERRORS) =
(exec-actionid-Mon-prep-fact0 caller partner σ msg∧
exec-actionid-Mon-prep-fact1 caller partner σ ∧
(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|)))

by (auto simp add: PREP-SENDid-def exec-actionid-Mon-prep-fact0-def
exec-actionid-Mon-prep-fact1-def

split: errors.split split-if split-if-asm)

lemma PREP-SENDid-obvious1:
(error-codes (PREP-SENDid σ (IPC PREP (SEND caller partner msg))) = ERROR-MEM error-mem) =

EUROMILS D31.4 Page 187 of 438

D31.4 – Test-Generation Methods

(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)) ∧
error-mem = not-valid-sender-addr-in-PREP-SEND ∧
(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)))

by (auto simp add: PREP-SENDid-def split: errors.split split-if split-if-asm)

lemma PREP-SENDid-obvious2:
(error-codes (PREP-SENDid σ (IPC PREP (SEND caller partner msg))) = ERROR-IPC error-IPC) =
(¬(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧

error-IPC = error-IPC-22-in-PREP-SEND ∧
(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|))) −→

(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-SEND ∧

(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|)))

)
by (auto simp add: PREP-SENDid-def exec-actionid-Mon-prep-fact2-def exec-actionid-Mon-prep-fact1-def

exec-actionid-Mon-prep-fact0-def
split: errors.split split-if split-if-asm)

lemma WAIT-SENDid-obvious0:
(error-codes (WAIT-SENDid σ (IPC WAIT (SEND caller partner msg))) = NO-ERRORS) =
(IPC-send-comm-check-stid caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ ∧
(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|)))

by (auto simp add: WAIT-SENDid-def
split: errors.split split-if split-if-asm option.split-asm)

lemma WAIT-SENDid-obvious1:
(error-codes (WAIT-SENDid σ (IPC WAIT (SEND caller partner msg))) = ERROR-IPC error-IPC) =
((¬ IPC-send-comm-check-stid caller partner σ −→

(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|) ∧

error-IPC = error-IPC-1-in-WAIT-SEND) ∧
(IPC-send-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→

(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller,

EUROMILS D31.4 Page 188 of 438

D31.4 – Test-Generation Methods

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|) ∧

error-IPC = error-IPC-3-in-WAIT-SEND) ∧
(IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→

(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)))=
update-state-wait-send-params5 σ caller ∧
error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC error-IPC) ∧
¬ IPC-params-c5 partner σ)))))

by (auto simp add: update-state-wait-send-params5-def WAIT-SENDid-def
split: errors.split split-if split-if-asm option.split-asm)

lemma WAIT-SENDid-obvious2:
¬(error-codes (WAIT-SENDid σ (IPC WAIT (SEND caller partner msg))) = ERROR-MEM error-IPC)

by (auto simp add:WAIT-SENDid-def split: errors.split split-if split-if-asm option.split-asm)

lemma BUF-SENDid-obvious0:
(error-codes (BUF-SENDid σ (IPC BUF (SEND caller partner msg))) = NO-ERRORS) =
(IPC-buf-check-stid caller partner σ ∧
BUF-SENDid σ (IPC BUF (SEND caller partner msg)) =
σ(|current-thread := caller,
resource := update-list (resource σ)

(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
by (auto simp add: BUF-SENDid-def)

lemma BUF-SENDid-obvious1:
(error-codes (BUF-SENDid σ (IPC BUF (SEND caller partner msg))) =

ERROR-IPC error-IPC-1-in-BUF-SEND) =
(¬ IPC-buf-check-stid caller partner σ ∧

BUF-SENDid σ (IPC BUF (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND|))

by (auto simp add: BUF-SENDid-def)

lemma MAP-SENDid-obvious0:
(error-codes (MAP-SENDid σ (IPC MAP (SEND caller partner msg))) = error) =
(error = NO-ERRORS ∧
MAP-SENDid σ (IPC MAP (SEND caller partner msg)) =
σ(|current-thread := caller,
resource := init-share-list (resource σ)

(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
by (auto simp add: MAP-SENDid-def)

EUROMILS D31.4 Page 189 of 438

D31.4 – Test-Generation Methods

lemma DONE-SENDid-obvious0:
(error-codes (exec-actionid σ (IPC DONE (SEND caller partner msg))) = error) =
((exec-actionid σ (IPC DONE (SEND caller partner msg)))= σ ∧ error-codes σ = error)

by simp

lemma PREP-RECVid-obvious0:
(error-codes (PREP-RECVid σ (IPC PREP (RECV caller partner msg))) = NO-ERRORS) =
(exec-actionid-Mon-prep-fact0 caller partner σ msg∧
exec-actionid-Mon-prep-fact1 caller partner σ ∧
(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

)
by (auto simp add: PREP-RECVid-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split: errors.split split-if split-if-asm)

lemma PREP-RECVid-obvious1:
(error-codes (PREP-RECVid σ (IPC PREP (RECV caller partner msg))) = ERROR-MEM error-mem) =
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)) ∧
error-mem = not-valid-receiver-addr-in-PREP-RECV ∧
(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|)))

by (auto simp add: PREP-RECVid-def split: errors.split split-if split-if-asm)

lemma PREP-RECVid-obvious2:
(error-codes (PREP-RECVid σ (IPC PREP (RECV caller partner msg))) = ERROR-IPC error-IPC) =
(¬(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-RECV ∧

(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|))) −→

(exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-RECV ∧
(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)))

)
by (auto simp add: PREP-RECVid-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def exec-actionid-Mon-prep-fact2-def
split: errors.split split-if split-if-asm)

EUROMILS D31.4 Page 190 of 438

D31.4 – Test-Generation Methods

lemma WAIT-RECVid-obvious0:
(error-codes (WAIT-RECVid σ (IPC WAIT (RECV caller partner msg))) = NO-ERRORS) =
(IPC-recv-comm-check-stid caller partner σ ∧
IPC-params-c4 caller partner ∧
IPC-params-c5 partner σ ∧
(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|)))

by (auto simp add: WAIT-RECVid-def
split: errors.split split-if split-if-asm option.split-asm)

lemma WAIT-RECVid-obvious1:
(error-codes (WAIT-RECVid σ (IPC WAIT (RECV caller partner msg))) = ERROR-IPC error-IPC) =
((¬ IPC-recv-comm-check-stid caller partner σ −→

(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)))=
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|) ∧

error-IPC = error-IPC-1-in-WAIT-RECV) ∧
(IPC-recv-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→

(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)))=
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|) ∧

error-IPC = error-IPC-3-in-WAIT-RECV) ∧
(¬ ¬ IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→

(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)))=
update-state-wait-recv-params5 σ caller ∧
error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC) ∧
¬ IPC-params-c5 partner σ)))))

by (auto simp add: update-state-wait-recv-params5-def WAIT-RECVid-def
split: errors.split split-if split-if-asm option.split-asm)

lemma WAIT-RECVid-obvious2:
¬(error-codes (WAIT-RECVid σ (IPC WAIT (RECV caller partner msg))) = ERROR-MEM error-mem)

by (auto simp add: WAIT-RECVid-def
split: errors.split split-if split-if-asm option.split-asm)

lemma BUF-RECVid-obvious0:
(error-codes (BUF-RECVid σ (IPC BUF (RECV caller partner msg))) = NO-ERRORS) =
(IPC-buf-check-stid caller partner σ ∧
BUF-RECVid σ (IPC BUF (RECV caller partner msg)) =
σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

EUROMILS D31.4 Page 191 of 438

D31.4 – Test-Generation Methods

error-codes := NO-ERRORS|))
by (auto simp add: BUF-RECVid-def)

lemma BUF-RECVid-obvious1:
(error-codes (BUF-RECVid σ (IPC BUF (RECV caller partner msg))) =

ERROR-IPC error-IPC-1-in-BUF-RECV) =
(¬ IPC-buf-check-stid caller partner σ ∧

BUF-RECVid σ (IPC BUF (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV|))

by (auto simp add: BUF-RECVid-def)

lemma MAP-RECVid-obvious0:
(error-codes (MAP-RECVid σ (IPC MAP (RECV caller partner msg))) = error) =
(error = NO-ERRORS ∧
MAP-RECVid σ (IPC MAP (RECV caller partner msg)) =
σ(|current-thread := caller,
resource := init-share-list (resource σ)

(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|))
by (auto simp add: MAP-RECVid-def)

lemma DONE-RECVid-obvious0:
(error-codes (exec-actionid σ (IPC DONE (RECV caller partner msg))) = error) =
((exec-actionid σ (IPC DONE (RECV caller partner msg)))= σ ∧ error-codes σ = error)

by simp

4.17.3 Symbolic Execution Rules for Error Codes field on Pure-level
lemma PREP-SENDid-Pure-obvious0:

(error-codes (PREP-SENDid σ (IPC PREP (SEND caller partner msg))) = NO-ERRORS =⇒ P) ≡
(exec-actionid-Mon-prep-fact0 caller partner σ msg &&&
exec-actionid-Mon-prep-fact1 caller partner σ &&&
(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))=⇒ P)

find-theorems name:Pure.
apply (rule equal-intr-rule)
apply (elim meta-impE)
apply (drule conjunctionD2)
apply (drule conjunctionD2)
apply (auto simp add: PREP-SENDid-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split: errors.split split-if split-if-asm)

done

lemma PREP-SENDid-Pure-obvious1:
(error-codes (PREP-SENDid σ (IPC PREP (SEND caller partner msg))) = ERROR-MEM error-mem =⇒P)

EUROMILS D31.4 Page 192 of 438

D31.4 – Test-Generation Methods

≡
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)) &&&
error-mem = not-valid-sender-addr-in-PREP-SEND &&&
(PREP-SENDid σ (IPC PREP (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|))

=⇒ P
)

apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (auto simp add: PREP-SENDid-def split: errors.split split-if split-if-asm)

lemma WAIT-SENDid-Pure-obvious0:
(error-codes (WAIT-SENDid σ (IPC WAIT (SEND caller partner msg))) = NO-ERRORS =⇒ P) ≡
(IPC-send-comm-check-stid caller partner σ &&&
IPC-params-c4 caller partner &&&
IPC-params-c5 partner σ &&&
(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|))

=⇒ P)
apply (rule equal-intr-rule)
apply (drule conjunctionD2)+
by (auto simp add:WAIT-SENDid-def split: errors.split split-if split-if-asm option.split-asm)

lemma WAIT-SENDid-Pure-obvious1:
(error-codes (WAIT-SENDid σ (IPC WAIT (SEND caller partner msg))) = ERROR-IPC error-IPC =⇒ P) ≡
((¬ IPC-send-comm-check-stid caller partner σ =⇒

(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND|) &&&

error-IPC = error-IPC-1-in-WAIT-SEND) &&&
(IPC-send-comm-check-stid caller partner σ =⇒
((¬ IPC-params-c4 caller partner =⇒

(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)))=
σ (|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|) &&&

error-IPC = error-IPC-3-in-WAIT-SEND) &&&
(IPC-params-c4 caller partner =⇒
((¬ IPC-params-c5 partner σ =⇒

(WAIT-SENDid σ (IPC WAIT (SEND caller partner msg)))= update-state-wait-send-params5 σ caller
&&&

error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC error-IPC) &&&
¬ IPC-params-c5 partner σ))))

=⇒ P)
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (simp-all add: update-state-wait-send-params5-def WAIT-SENDid-def

split: errors.split split-if split-if-asm option.split option.split-asm)

EUROMILS D31.4 Page 193 of 438

D31.4 – Test-Generation Methods

lemma DONE-SENDid-Pure-obvious0:
(error-codes (exec-actionid σ (IPC DONE (SEND caller partner msg))) = error =⇒P) ≡
((exec-actionid σ (IPC DONE (SEND caller partner msg)))= σ =⇒ error-codes σ = error =⇒P)

by simp

lemma PREP-RECVid-Pure-obvious0:
(error-codes (PREP-RECVid σ (IPC PREP (RECV caller partner msg))) = NO-ERRORS =⇒ P) ≡
(exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|))

=⇒ P)
apply (rule equal-intr-rule)
by (auto simp add: PREP-RECVid-def exec-actionid-Mon-prep-fact0-def

exec-actionid-Mon-prep-fact1-def
split: errors.split split-if split-if-asm)

lemma PREP-RECVid-Pure-obvious1:
(error-codes (PREP-RECVid σ (IPC PREP (RECV caller partner msg))) = ERROR-MEM error-mem =⇒ P)

≡
(¬((list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg)) &&&
error-mem = not-valid-receiver-addr-in-PREP-RECV &&&
(PREP-RECVid σ (IPC PREP (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|))

=⇒ P)
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (auto simp add: PREP-RECVid-def split: errors.split split-if split-if-asm)

lemma WAIT-RECVid-Pure-obvious0:
(error-codes (WAIT-RECVid σ (IPC WAIT (RECV caller partner msg))) = NO-ERRORS =⇒ P) ≡
(IPC-recv-comm-check-stid caller partner σ &&&
IPC-params-c4 caller partner &&&
IPC-params-c5 partner σ &&&
(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)) =
σ(|current-thread := caller ,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|))

=⇒ P)
apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (auto simp add:WAIT-RECVid-def split: errors.split split-if split-if-asm option.split-asm)

lemma WAIT-RECVid-Pure-obvious1:
(error-codes (WAIT-RECVid σ (IPC WAIT (RECV caller partner msg))) = ERROR-IPC error-IPC =⇒ P)≡
((¬ IPC-recv-comm-check-stid caller partner σ =⇒

EUROMILS D31.4 Page 194 of 438

D31.4 – Test-Generation Methods

(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)))=
σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV|) &&&

error-IPC = error-IPC-1-in-WAIT-RECV) &&&
(IPC-recv-comm-check-stid caller partner σ =⇒
((¬ IPC-params-c4 caller partner =⇒

(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)))= σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|) &&&

error-IPC = error-IPC-3-in-WAIT-RECV) &&&
(IPC-params-c4 caller partner =⇒
((¬ IPC-params-c5 partner σ =⇒

(WAIT-RECVid σ (IPC WAIT (RECV caller partner msg)))= update-state-wait-recv-params5 σ caller
&&&

error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC) &&&
¬ IPC-params-c5 partner σ)))) =⇒ P)

apply (rule equal-intr-rule)
apply (simp-all add: conjunction-imp Pure.imp-conjunction)
by (simp-all add: update-state-wait-recv-params5-def WAIT-RECVid-def

split: errors.split split-if split-if-asm list.split-asm)

lemma DONE-RECVid-Pure-obvious0:
(error-codes (exec-actionid σ (IPC DONE (RECV caller partner msg))) = error =⇒ P) ≡
((exec-actionid σ (IPC DONE (RECV caller partner msg)))= σ =⇒ error-codes σ = error =⇒ P)

by simp

4.17.4 Symbolic Execution of Action Informations Field
lemma act-info-obvious0:

(act-info (th-flag (update-state caller σ f error)) =
(act-info (th-flag σ))(caller := None)) =
(act-info (stateid.th-flag σ) = (act-info (stateid.th-flag σ))(caller := None))

by simp

lemma act-info-obvious1:
act-info (th-flag (update-state caller (init-act-info caller partner σ) f error)) =
((act-info (th-flag σ)) (caller := None, partner := None))

by simp

lemma act-info-obvious2:
act-info (th-flag (update-state caller (remove-caller-error caller σ) f error)) =
((act-info (th-flag σ)) (caller := None))

by simp

lemma act-info-prep-send-obvious0:
act-info (th-flag (PREP-SENDid (init-act-info caller partner σ)
(IPC PREP (SEND caller partner msg)))) =
(act-info (stateid.th-flag σ))(caller := None, partner := None)

EUROMILS D31.4 Page 195 of 438

D31.4 – Test-Generation Methods

by (simp add: PREP-SENDid-def)

lemma act-info-prep-send-obvious1:
(act-info (stateid.th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(PREP-SENDid(init-act-info caller partner
σ(|current-thread := caller,
thread-list := th-list,
error-codes := error|))

(IPC PREP (SEND caller partner msg)))))
by (simp add: PREP-SENDid-def)

lemma act-info-wait-send-obvious0:
act-info (th-flag (WAIT-SENDid (init-act-info caller partner σ)
(IPC WAIT (SEND caller partner msg)))) =
(act-info (th-flag σ))(caller := None, partner := None)

by (simp add: WAIT-SENDid-def split: option.split)

lemma act-info-wait-send-obvious1:
(act-info (stateid.th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(WAIT-SENDid(init-act-info caller partner
σ(|current-thread := caller,

thread-list := th-list,
error-codes := error|))

(IPC WAIT (SEND caller partner msg)))))
by (simp add: WAIT-SENDid-def split: option.split)

lemma act-info-buf-send-obvious0:
act-info (th-flag (BUF-SENDid (init-act-info caller partner σ)
(IPC BUF (SEND caller partner msg)))) =
(act-info (stateid.th-flag σ))(caller := None, partner := None)

by (simp add: BUF-SENDid-def)

lemma act-info-buf-send-obvious1:
(act-info (stateid.th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(BUF-SENDid(init-act-info caller partner
σ(|current-thread := caller,

thread-list := th-list,
error-codes := error|))

(IPC BUF (SEND caller partner msg)))))
by (simp add: BUF-SENDid-def)

lemma act-info-done-send-obvious0:
act-info (th-flag (exec-actionid (init-act-info caller partner σ)
(IPC DONE (SEND caller partner msg)))) =
(act-info (stateid.th-flag σ))(caller := None, partner := None)

by simp

lemma act-info-done-send-obvious1:
(act-info (stateid.th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(exec-actionid(init-act-info caller partner
σ(|current-thread := caller,

thread-list := th-list,
error-codes := error|))

EUROMILS D31.4 Page 196 of 438

D31.4 – Test-Generation Methods

(IPC DONE (SEND caller partner msg)))))
by simp

lemma act-info-prep-recv-obvious0:
act-info (th-flag (PREP-RECVid (init-act-info caller partner σ)
(IPC PREP (RECV caller partner msg)))) =
(act-info (stateid.th-flag σ))(caller := None, partner := None)

by (simp add: PREP-RECVid-def)

lemma act-info-prep-recv-obvious1:
(act-info (stateid.th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(PREP-RECVid(init-act-info caller partner
σ(|current-thread := caller,

thread-list := th-list,
error-codes := error|))

(IPC PREP (RECV caller partner msg)))))
by (simp add: PREP-RECVid-def)

lemma act-info-wait-recv-obvious0:
act-info (th-flag (WAIT-RECVid (init-act-info caller partner σ)
(IPC WAIT (RECV caller partner msg)))) =
(act-info (th-flag σ))(caller := None, partner := None)

by (simp add: WAIT-RECVid-def split: option.split)

lemma act-info-wait-recv-obvious1:
(act-info (stateid.th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(WAIT-RECVid(init-act-info caller partner
σ(|current-thread := caller,

thread-list := th-list,
error-codes := error|))

(IPC WAIT (RECV caller partner msg)))))
by (simp add: WAIT-RECVid-def split: option.split)

lemma act-info-buf-recv-obvious0:
act-info (th-flag (BUF-RECVid (init-act-info caller partner σ)
(IPC BUF (RECV caller partner msg)))) =
(act-info (th-flag σ))(caller := None, partner := None)

by (simp add: BUF-RECVid-def)

lemma act-info-buf-recv-obvious1:
(act-info (th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(BUF-RECVid(init-act-info caller partner
σ(|current-thread := caller,

thread-list := th-list,
error-codes := error|))

(IPC BUF (RECV caller partner msg)))))
by (simp add: BUF-RECVid-def)

lemma act-info-done-recv-obvious0:
act-info (th-flag (exec-actionid (init-act-info caller partner σ)
(IPC DONE (RECV caller partner msg)))) =
(act-info (th-flag σ))(caller := None, partner := None)

by simp

EUROMILS D31.4 Page 197 of 438

D31.4 – Test-Generation Methods

lemma act-info-done-recv-obvious1:
(act-info (th-flag σ))(caller := None, partner := None) =
(act-info(th-flag(exec-actionid(init-act-info caller partner
σ(|current-thread := caller,
thread-list := th-list,
error-codes := error|))

(IPC DONE (RECV caller partner msg)))))
by simp

lemmas atomic-action-normalizer-errors =
PREP-RECVid-obvious0 PREP-RECVid-obvious1 PREP-RECVid-obvious2
PREP-SENDid-obvious0 PREP-SENDid-obvious1 PREP-SENDid-obvious2
WAIT-RECVid-obvious0 WAIT-RECVid-obvious1 WAIT-RECVid-obvious2
WAIT-SENDid-obvious0 WAIT-SENDid-obvious1 WAIT-SENDid-obvious2
BUF-RECVid-obvious0 BUF-SENDid-obvious0 DONE-SENDid-obvious0
DONE-RECVid-obvious0

lemmas atomic-action-normalizer-errors-Pure =
PREP-RECVid-Pure-obvious0 PREP-RECVid-Pure-obvious1
PREP-SENDid-Pure-obvious0 PREP-SENDid-Pure-obvious1
WAIT-RECVid-Pure-obvious0 WAIT-RECVid-Pure-obvious1
WAIT-SENDid-Pure-obvious0

DONE-SENDid-Pure-obvious0
DONE-RECVid-Pure-obvious0

lemmas atomic-action-normalizer-act-info =
act-info-obvious0 act-info-obvious1 act-info-obvious2
act-info-prep-send-obvious0 act-info-prep-recv-obvious0
act-info-wait-send-obvious0 act-info-wait-recv-obvious0
act-info-buf-send-obvious0 act-info-buf-recv-obvious0
act-info-done-send-obvious0 act-info-done-recv-obvious0

lemmas atomic-action-normalizer =
prep-send-obvious prep-recv-obvious wait-send-obvious wait-recv-obvious
buf-send-obvious buf-recv-obvious

lemmas PREP-SENDid-normalizer-hyps =
thread-eq-def
exec-actionid-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def IPC-params-c1-def
IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def is-part-mem-th-def
is-part-addr-addr-def is-part-mem-def Product-Type.split-beta

lemmas PREP-RECVid-normalizer-hyps =
thread-eq-def Product-Type.split-beta
exec-actionid-Mon-prep-fact0-def exec-actionid-Mon-prep-fact1-def IPC-params-c1-def
IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def is-part-addr-th-mem-def is-part-mem-th-def
is-part-addr-addr-def is-part-mem-def

lemmas WAIT-SENDid-normalizer-hyps =
thread-eq-def Product-Type.split-beta
IPC-send-comm-check-stid-def IPC-params-c4-def IPC-buf-check-stid-def

lemmas WAIT-RECVid-normalizer-hyps =

EUROMILS D31.4 Page 198 of 438

D31.4 – Test-Generation Methods

thread-eq-def Product-Type.split-beta
IPC-recv-comm-check-stid-def IPC-params-c4-def IPC-buf-check-stid-def

lemmas BUF-SENDid-normalizer-hyps =
thread-eq-def Product-Type.split-beta HOL.split-if HOL.split-if-asm
upd-st-res-equivid-def update-th-smm-equiv-def
equiv-def sym-def refl-on-def

lemmas BUF-RECVid-normalizer-hyps = BUF-SENDid-normalizer-hyps

lemmas splitter =
option.split errors.split
split-if list.split

lemmas splitter-asm =
option.split-asm errors.split-asm
split-if-asm list.split-asm

4.18 IPC pre-conditions normalizer

lemmas pre-conditions-defs =
IPC-params-c1-def IPC-params-c2-def IPC-params-c3-def IPC-params-c4-def IPC-params-c5-def
IPC-send-comm-check-stid-def IPC-recv-comm-check-stid-def IPC-buf-check-stid-def
Product-Type.split-beta is-part-addr-th-mem-def is-part-addr-addr-def

end

theory IPC-trace-normalizer

imports IPC-atomic-action-normalizer

begin

4.19 The Core Theory for Symbolic Execution of abortlif t

4.19.1 mbind and ioprog fail
lemma mbindF ailSave-ioprog-None1:

assumes ioprog-fail: ioprog a σ = None
shows mbindF ailSave (a # S) ioprog σ = Some ([], σ)
using assms
by(simp add: Product-Type.split-beta)

lemma mbindF ailSave-ioprog-None2:
assumes exec-fail: mbindF ailSave (a # S) ioprog σ = Some ([], σ)
shows ioprog a σ = None
using exec-fail
by(simp add: Product-Type.split-beta split: option.split-asm)

lemma mbindF ailSave-ioprog-None:
(ioprog a σ = None) = (mbindF ailSave (a # S) ioprog σ = Some ([], σ))
by (auto simp: mbindF ailSave-ioprog-None1 mbindF ailSave-ioprog-None2)

Here is a collection of generic symbolic execution rules for for our Monad-transformer abortlif t. They

EUROMILS D31.4 Page 199 of 438

D31.4 – Test-Generation Methods

make the specific semantics of aborting atomic actions explicit on the level of a side-calculus.

lemma abort-None1:
assumes ioprog-fail: ioprog a σ = None
shows mbind (a # S)(abortlif t ioprog) σ =

Some ([], σ)
oops

lemma abort-None2:
assumes exec-fail : mbind (a # S)(abortlif t ioprog) σ =

Some([], σ)
shows ioprog a σ = None

proof (cases a)
case (IPC ipc-stage ipc-direction)
assume hyp0: a = IPC ipc-stage ipc-direction
then show ?thesis
using assms
proof (cases ipc-stage)

case PREP
assume hyp1:ipc-stage = PREP
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)

case (SEND thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
next

case (RECV thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
qed

next
case WAIT
assume hyp1:ipc-stage = WAIT
then show ?thesis
using assms hyp0 hyp1

proof (cases ipc-direction)
case (SEND thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
next

case (RECV thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
qed

next
case BUF

EUROMILS D31.4 Page 200 of 438

D31.4 – Test-Generation Methods

assume hyp1:ipc-stage = BUF
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)

case (SEND thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
next

case (RECV thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
qed

next
case MAP
assume hyp1:ipc-stage = MAP
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)

case (SEND thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
next

case (RECV thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
qed

next
case DONE
assume hyp1: ipc-stage = DONE
then show ?thesis
using assms hyp0 hyp1
proof (cases ipc-direction)

case (SEND thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = SEND thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
next

case (RECV thread-id1 thread-id2 adresses)
assume hyp2: ipc-direction = RECV thread-id1 thread-id2 adresses
then show ?thesis
using assms hyp0 hyp1 hyp2
by (simp-all add: Product-Type.split-beta

split: split-if-asm option.split-asm errors.split-asm)
qed

EUROMILS D31.4 Page 201 of 438

D31.4 – Test-Generation Methods

qed
qed

lemma abort-None ′:
assumes not-in-err : caller /∈ dom (act-info (stateid.th-flag σ))
and not-done-act: stages 6= DONE
and ioprog-fail : ioprog (IPC stages (SEND caller partner msg)) σ = None
shows (abortlif t ioprog) (IPC stages (SEND caller partner msg)) σ = None
using assms
by(simp add: split: p4-stageipc.split,safe, simp-all)

lemma abort-None ′′:
assumes not-in-err :

∧
caller. caller /∈ dom (act-info (stateid.th-flag σ))

and not-done-act: stages 6= DONE
and ioprog-fail : ioprog (IPC stages direction) σ = None
shows (abortlif t ioprog) (IPC stages direction) σ = None

proof (cases stages)
case (PREP)
then show abortlif t ioprog (IPC stages direction) σ = None
using assms

proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = PREP =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = SEND thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = PREP =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

qed
next

case (WAIT)
then show abortlif t ioprog (IPC stages direction) σ = None
using assms

proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = WAIT =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒

EUROMILS D31.4 Page 202 of 438

D31.4 – Test-Generation Methods

direction = SEND thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = WAIT =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

qed
next

case (BUF)
then show abortlif t ioprog (IPC stages direction) σ = None
using assms

proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = BUF =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = SEND thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = BUF =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

qed
next

case (MAP)
then show abortlif t ioprog (IPC stages direction) σ = None
using assms

proof (cases direction)
case (SEND thread-id1 thread-id2 adresses)
fix caller
show
stages = MAP =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒

EUROMILS D31.4 Page 203 of 438

D31.4 – Test-Generation Methods

direction = SEND thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

next
case (RECV thread-id1 thread-id2 adresses)
fix caller
show
stages = MAP =⇒
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
stages 6= DONE =⇒
ioprog (IPC stages direction) σ = None =⇒
direction = RECV thread-id1 thread-id2 adresses =⇒
abortlif t ioprog (IPC stages direction) σ = None

using assms
by simp

qed
next

case (DONE)
then show abortlif t ioprog (IPC stages direction) σ = None
using assms
by simp

qed

lemma abort-None0:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and not-done-act:stages 6= DONE
and ioprog-fail :ioprog (IPC stages (SEND caller partner msg)) σ = None
shows (abortlif t ioprog) (IPC stages (SEND caller partner msg)) σ =

ioprog (IPC stages (SEND caller partner msg)) σ
using not-in-err not-done-act ioprog-fail
by(simp add: split: IPC-atomic-actions.p4-stageipc.split,safe, simp-all)

lemma abort-None1:
assumes not-in-err :caller /∈ dom (act-info (stateid.th-flag σ))
and ioprog-fail: ioprog (IPC PREP (SEND caller partner msg)) σ = None
shows mbind ((IPC PREP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some ([], σ)
using assms
by simp

lemma mbind-exec-actionid-Mon-None:
mbind (a # S) exec-actionid-Mon σ 6= None
by(rule Monads.mbind-nofailure)

lemma mbind-exec-actionid-Mon-Some:
∃ outs σ ′. mbind (a # S) exec-actionid-Mon σ = Some (outs,σ ′)

by(insert mbind-exec-actionid-Mon-None, auto)

lemma mbindef-exec-actionid-Mon-None:
mbind (a # S) exec-actionid-Mon σ 6= None
by(rule mbind-exec-actionid-Mon-None)

lemma mbindef-exec-actionid-Mon-Some:
∃ outs σ ′. mbind (a # S) exec-actionid-Mon σ = Some (outs,σ ′)
by (auto, rule actionipc.induct, simp split: option.split)

EUROMILS D31.4 Page 204 of 438

D31.4 – Test-Generation Methods

4.19.2 Symbolic Execution Rules on PREP stage
lemma abort-prep-send-obvious0:

assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-success: ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(NO-ERRORS, (error-tab-transfer caller σ σ ′))
using assms
by simp

lemma abort-prep-send-obvious1:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-preps caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-prep-send-obvious2:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-preps caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-prep-send-obvious3:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-sucess:ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows

mbind ((IPC PREP (SEND caller partner msg))#S) (abortlif t ioprog) σ =
Some(NO-ERRORS# fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (None)
then show ?thesis
using assms
by simp

next
case (Some a)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
show ?thesis
using assms hyp0 hyp1
proof (case-tac aa)
assume hyp2: aa= NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by (simp split: option.split)

next
fix error-memory
assume hyp3: aa = ERROR-MEM error-memory

EUROMILS D31.4 Page 205 of 438

D31.4 – Test-Generation Methods

show ?thesis
using assms hyp0 hyp1 hyp3
by simp

next
fix error-IPC
assume hyp4: aa = ERROR-IPC error-IPC
show ?thesis
using assms hyp0 hyp1 hyp4
by simp

qed
qed

qed

lemma abort-prep-send-obvious4:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success: ioprog (IPC PREP(SEND caller partner msg))σ = Some(ERROR-MEM error-mem,σ ′)
shows

mbind ((IPC PREP (SEND caller partner msg))#S) (abortlif t ioprog) σ =
Some(ERROR-MEM error-mem #

fst(the(mbind S (abortlif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg))))

proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (None)
then show ?thesis
using assms
by simp

next
case (Some a)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)
fix aa b
assume hyp1: a = (aa, b)
show ?thesis
using assms hyp0 hyp1
proof (case-tac aa)

assume hyp2: aa = NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by simp

next
fix error-memory
assume hyp3: aa = ERROR-MEM error-memory
show ?thesis
using assms hyp0 hyp1 hyp3
by (simp split: option.split)

next
fix error-IPC
assume hyp4: aa = ERROR-IPC error-IPC
show ?thesis
using assms hyp0 hyp1 hyp4
by simp

qed
qed

qed

EUROMILS D31.4 Page 206 of 438

D31.4 – Test-Generation Methods

lemma abort-prep-send-obvious5:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-succes: ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC PREP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC# fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))))

proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case (None)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) σ = None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp0:ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
then show ?thesis
using assms hyp0

proof (cases a)
fix aa b
assume hyp1: a = (aa, b)
show ?thesis
using assms hyp0 hyp1
proof(case-tac aa)
assume hyp2: aa = NO-ERRORS
show ?thesis
using assms hyp0 hyp1 hyp2
by simp

next
fix error-memory
assume hyp3: aa = ERROR-MEM error-memory
show ?thesis
using assms hyp0 hyp1 hyp3
by simp

next
fix error-IPCa
assume hyp4: aa = ERROR-IPC error-IPCa
show ?thesis
using assms hyp0 hyp1 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))
case (None)
assume hyp5:mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg) = None
show ?thesis
using assms hyp0 hyp1 hyp4 hyp5
by simp

next
case (Some ab)
assume hyp6: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms
by (simp add: Product-Type.split-beta)

qed

EUROMILS D31.4 Page 207 of 438

D31.4 – Test-Generation Methods

qed
qed

qed

lemma abort-prep-send-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC PREP (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-prep-send-obvious7:
assumes in-err: caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC PREP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

using assms
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case (None)
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0
by simp

qed
qed

lemma abort-prep-send-obvious8:
assumes A: ∀ act σ . ioprog act σ 6= None
shows mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#

fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

else if ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)
then Some(ERROR-MEM error-mem#

fst(the(mbind S (abortlif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#

fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC msg)))

,

EUROMILS D31.4 Page 208 of 438

D31.4 – Test-Generation Methods

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))))

else if ioprog (IPC PREP (SEND caller partner msg)) σ = None
then Some([], σ)
else id (mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case (None)
thus ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
thus ?thesis
using A hyp0
proof (cases a)

fix aa b
assume hyp0 : a = (aa, b)
thus ?thesis
using A hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
thus ?thesis
by simp

next
case (Some ab)
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some ab
thus ?thesis
using A hyp0 hyp1
proof (cases ab)

fix ac ba
assume hyp2: ab = (ac, ba)
thus ?thesis
using A hyp0 hyp1 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))
case None
thus ?thesis
by simp

next
case (Some ad)
assume hyp3: mbindF ailSave S (abortlif t ioprog) (set-error-ipc-preps caller partner σ σ ′ error-IPC msg)

=
Some ad

thus ?thesis
using A hyp0 hyp1 hyp2 hyp3
proof (cases ad)

fix ae bb
assume hyp4: ad = (ae, bb)
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg))
case None
thus ?thesis
by simp

next
case (Some af)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

EUROMILS D31.4 Page 209 of 438

D31.4 – Test-Generation Methods

(set-error-mem-preps caller partner σ σ ′ error-mem msg) = Some af
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases af)

fix ag bc
assume hyp6: af = (ag, bc)
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))

case None
thus ?thesis
by simp

next
case (Some ah)
assume hyp7:mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some ah
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
proof (cases ah)
fix ai bd
assume hyp8: ah= (ai, bd)
thus ?thesis
using A hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7 hyp8
by simp

qed
qed

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-prep-send-obvious8 ′:
mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

Some(NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#

fst(the(mbind S (abortlif t ioprog)
(set-error-mem-preps caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

Some(ERROR-IPC error-IPC#
fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-preps caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

EUROMILS D31.4 Page 210 of 438

D31.4 – Test-Generation Methods

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
thus ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
thus ?thesis

proof −
{have 1: caller ∈ dom (act-info (th-flag σ)) −→

(case a of (outs, σ ′′)⇒ Some (get-caller-error caller σ # outs, σ ′′)) =
Some (get-caller-error caller σ # fst a, snd a)

by (simp add: Product-Type.split-beta)
thus ?thesis
using hyp0 1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
{ case None

thus ?thesis
using hyp0 1
by simp

next
case (Some aa)
assume hyp1: ioprog (IPC PREP (SEND caller partner msg)) σ = Some aa
thus ?thesis
using hyp0 hyp1 1
proof (cases aa)

fix ab b
assume hyp2: aa = (ab, b)
thus ?thesis
using hyp0 hyp1 hyp2 1
proof (cases ab)
case NO-ERRORS
assume hyp3: ab = NO-ERRORS
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 1
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ b))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ b) = Some ac
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp6 1
proof (cases a)

fix ad ba
assume hyp7: a = (ad, ba)
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 1
proof (cases ac)
fix ae bb
assume hyp8: ac = (ae, bb)
thus ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp7 hyp6 hyp8 1
by simp

qed

EUROMILS D31.4 Page 211 of 438

D31.4 – Test-Generation Methods

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4: ab = ERROR-MEM error-memory
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 1
proof (cases mbindF ailSave S (abortlif t ioprog) b)
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp6: mbindF ailSave S (abortlif t ioprog) b = Some ac
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp6 1
proof (cases a)

fix ad ba
assume hyp7: a = (ad, ba)
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 1
proof (cases ac)
fix ae bb
assume hyp8: ac = (ae, bb)
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg))
case None
thus ?thesis
by simp

next
case (Some af)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg) =
Some af

thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 1
proof (cases af)

fix ag bc
assume hyp10: af = (ag, bc)
thus ?thesis
using hyp0 hyp1 hyp2 hyp4 hyp7 hyp6 hyp8 hyp9 hyp10 1
by simp

qed
qed

qed
qed

qed
next

case (ERROR-IPC error-IPC)
assume hyp5: ab = ERROR-IPC error-IPC
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 1
proof (cases mbindF ailSave S (abortlif t ioprog) b)
case None
thus ?thesis
by simp

EUROMILS D31.4 Page 212 of 438

D31.4 – Test-Generation Methods

next
case (Some ac)
assume hyp6: mbindF ailSave S (abortlif t ioprog) b = Some ac
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp6 1
proof (cases a)

fix ad ba
assume hyp7: a = (ad, ba)
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 1
proof (cases ac)
fix ae bb
assume hyp8: ac = (ae, bb)
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg))
case None
thus ?thesis
by simp

next
case (Some af)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg) =
Some af

thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 1
proof (cases af)

fix ag bc
assume hyp10: af = (ag, bc)
thus ?thesis
using hyp0 hyp1 hyp2 hyp5 hyp7 hyp6 hyp8 hyp9 hyp10 1
by simp

qed
qed

qed
qed

qed
qed

qed
}qed

}qed
qed

lemma abort-prep-send-obvious9:
fst(the(mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-preps caller partner σ σ ′ error-mem msg)))
| Some(ERROR-IPC error-IPC, σ ′)⇒

ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

EUROMILS D31.4 Page 213 of 438

D31.4 – Test-Generation Methods

(set-error-ipc-preps caller partner σ σ ′ error-IPC msg)))
| None⇒ []))

proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
thus ?thesis
using assms
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) σ = None
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = None
thus ?thesis
using assms hyp0 hyp1
by simp

next
case (Some a)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) σ = None
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some a
thus ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
thus ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case (Some a)
assume hyp0: ioprog (IPC PREP (SEND caller partner msg)) σ = Some a
thus ?thesis
using hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = None
thus ?thesis
using assms hyp1 hyp0
by simp

next
case (Some aa)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some aa
thus ?thesis
using hyp0 hyp2 assms
proof −

have 1: (caller ∈ dom (act-info (th-flag σ)) −→
fst (the (case aa of (outs, σ ′′)⇒ Some (get-caller-error caller σ # outs, σ ′′))) =
get-caller-error caller σ # fst aa)
proof (cases aa)

fix a b
assume hyp3: aa = (a, b)
thus ?thesis
by simp

qed
thus ?thesis
using 1 assms hyp0 hyp2
proof (cases a)

fix ab b
assume hyp3:a = (ab, b)

EUROMILS D31.4 Page 214 of 438

D31.4 – Test-Generation Methods

thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases ab)

case (NO-ERRORS)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ b))

case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp4:ab = NO-ERRORS
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ b) = Some ac
thus ?thesis
using hyp3 hyp4 hyp5 1assms hyp0 hyp2
proof (cases ac)

fix ad ba
assume hyp6: ac = (ad, ba)
thus ?thesis
using hyp3 hyp4 hyp5 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-MEM error-memory)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp7: ab = ERROR-MEM error-memory
assume hyp8: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ b error-memory msg) = Some ac
thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6: ac = (ad, ba)
thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg))
case None
thus ?thesis
by simp

next

EUROMILS D31.4 Page 215 of 438

D31.4 – Test-Generation Methods

case (Some ac)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ b error-IPC msg) = Some ac
assume hyp10: ab = ERROR-IPC error-IPC
thus ?thesis
using assms hyp9 hyp10 hyp3 1 hyp0 hyp2

proof (cases ac)
fix ad ba
assume hyp6: ac = (ad, ba)
thus ?thesis
using hyp3 hyp9 hyp10 1 assms hyp0 hyp2
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious0:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-succes:ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

lemma abort-prep-recv-obvious1:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success :ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC PREP (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-prepr caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-prep-recv-obvious2:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-success: ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC PREP (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-prep-recv-obvious3:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(NO-ERRORS# fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

EUROMILS D31.4 Page 216 of 438

D31.4 – Test-Generation Methods

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-prep-recv-obvious4:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-prepr caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog) (set-error-mem-prepr caller partner σ σ ′ error-mem msg))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some aa)
assume hyp1: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg) = Some aa
then show ?thesis
using assms hyp0 hyp1
proof (cases aa)

fix ab b
assume hyp2: aa = (ab, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

qed

lemma abort-prep-recv-obvious5:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

EUROMILS D31.4 Page 217 of 438

D31.4 – Test-Generation Methods

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))),
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some aa)
assume hyp1: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg) =
Some aa

then show ?thesis
using assms hyp0 hyp1
proof (cases aa)

fix ab b
assume hyp2: aa = (ab, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

qed

lemma abort-prep-recv-obvious6:
assumes in-err: caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC PREP (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using in-err
by simp

lemma abort-prep-recv-obvious7:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC PREP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)

EUROMILS D31.4 Page 218 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-prep-recv-obvious8:
mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#

fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC PREP (RECV caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba

EUROMILS D31.4 Page 219 of 438

D31.4 – Test-Generation Methods

assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg) =Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)

fix ae bb
assume hyp5:ad = (ae,bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6:mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)

fix ag bc
assume hyp7:af = (ag,bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-prep-recv-obvious8 ′:
mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

Some(NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog)

EUROMILS D31.4 Page 220 of 438

D31.4 – Test-Generation Methods

(set-error-mem-prepr caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a= (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2:ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac,ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4:ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba)= Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8:ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed

EUROMILS D31.4 Page 221 of 438

D31.4 – Test-Generation Methods

qed
next

case (ERROR-MEM error-memory)
assume hyp5: ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)

fix ae bb
assume hyp10:ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6: ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12:ad = (ae,bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

EUROMILS D31.4 Page 222 of 438

D31.4 – Test-Generation Methods

lemma abort-prep-recv-obvious9:
fst(the(mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#
fst(the(mbind S (abortlif t ioprog)
(set-error-mem-prepr caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
ERROR-IPC error-IPC#
fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)))

| None⇒ []))
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)
case None
thus ?thesis
using assms
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
assume hyp0: ioprog (IPC PREP (RECV caller partner msg)) σ = None
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = None
thus ?thesis
using assms hyp0 hyp1
by simp

next
case (Some a)
assume hyp0: ioprog (IPC PREP (RECV caller partner msg)) σ = None
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some a
thus ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
thus ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case (Some a)
assume hyp0: ioprog (IPC PREP (RECV caller partner msg)) σ = Some a
thus ?thesis
using hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = None
thus ?thesis
using assms hyp1 hyp0
by simp

next
case (Some aa)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some aa
thus ?thesis
using hyp0 hyp2 assms
proof −

EUROMILS D31.4 Page 223 of 438

D31.4 – Test-Generation Methods

have 1: (caller ∈ dom (act-info (th-flag σ)) −→
fst (the (case aa of (outs, σ ′′)⇒ Some (get-caller-error caller σ # outs, σ ′′))) =
get-caller-error caller σ # fst aa)
proof (cases aa)

fix a b
assume hyp3: aa = (a, b)
thus ?thesis
by simp

qed
thus ?thesis
using 1 assms hyp0 hyp2
proof (cases a)

fix ab b
assume hyp3:a = (ab, b)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases ab)

case (NO-ERRORS)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ b))

case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp4:ab = NO-ERRORS
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ b) = Some ac
thus ?thesis
using hyp3 hyp4 hyp5 1assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6: ac = (ad, ba)
thus ?thesis
using hyp3 hyp4 hyp5 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-MEM error-memory)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ b error-memory msg))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp7: ab = ERROR-MEM error-memory
assume hyp8: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ b error-memory msg) = Some ac
thus ?thesis
using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
proof (cases ac)
fix ad ba
assume hyp6: ac = (ad, ba)
thus ?thesis

EUROMILS D31.4 Page 224 of 438

D31.4 – Test-Generation Methods

using hyp3 hyp8 hyp7 1 assms hyp0 hyp2
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
thus ?thesis
using hyp3 1 assms hyp0 hyp2
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ b error-IPC msg))
case None
thus ?thesis
by simp

next
case (Some ac)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ b error-IPC msg) = Some ac
assume hyp10: ab = ERROR-IPC error-IPC
thus ?thesis
using assms hyp9 hyp10 hyp3 1 hyp0 hyp2

proof (cases ac)
fix ad ba
assume hyp6: ac = (ad, ba)
thus ?thesis
using hyp3 hyp9 hyp10 1 assms hyp0 hyp2
by simp

qed
qed

qed
qed

qed
qed

qed

4.19.3 Symbolic Execution rules on WAIT stage
lemma abort-wait-send-obvious0:

assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

lemma abort-wait-send-obvious1:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-succes:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-waits caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-wait-send-obvious2:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC WAIT (SEND caller partner msg)) σ =

EUROMILS D31.4 Page 225 of 438

D31.4 – Test-Generation Methods

Some (ERROR-IPC error-IPC, (set-error-ipc-waits caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-wait-send-obvious3:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-sucess:ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(NO-ERRORS# fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

using assms
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-send-obvious4:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-waits caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-waits caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-mem-waits caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a= (aa,b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

EUROMILS D31.4 Page 226 of 438

D31.4 – Test-Generation Methods

lemma abort-wait-send-obvious5:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-send-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC WAIT (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-wait-send-obvious7:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC WAIT (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed

EUROMILS D31.4 Page 227 of 438

D31.4 – Test-Generation Methods

qed

lemma abort-wait-send-obvious8:
mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#

fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC WAIT (SEND caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

EUROMILS D31.4 Page 228 of 438

D31.4 – Test-Generation Methods

(set-error-mem-waits caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)

fix ag bc
assume hyp7: af = (ag, bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-wait-send-obvious8 ′:
mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒
Some(NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

EUROMILS D31.4 Page 229 of 438

D31.4 – Test-Generation Methods

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next

EUROMILS D31.4 Page 230 of 438

D31.4 – Test-Generation Methods

case (ERROR-MEM error-memory)
assume hyp5:ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)

fix ae bb
assume hyp10: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6:ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)

fix ae bb
assume hyp12: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious9:
fst(the(mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))

EUROMILS D31.4 Page 231 of 438

D31.4 – Test-Generation Methods

then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-waits caller partner σ σ ′ error-mem msg)))
| Some(ERROR-IPC error-IPC, σ ′)⇒

ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-waits caller partner σ σ ′ error-IPC msg)))

| None⇒ []))
by (simp split: option.split errors.split, auto)

lemma abort-wait-recv-obvious0:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

lemma abort-wait-recv-obvious1:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success: ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-waitr caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-wait-recv-obvious2:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-wait-recv-obvious3:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(NO-ERRORS# fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b

EUROMILS D31.4 Page 232 of 438

D31.4 – Test-Generation Methods

assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious4:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-waitr caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-waitr caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-mem-waitr caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious5:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b

EUROMILS D31.4 Page 233 of 438

D31.4 – Test-Generation Methods

assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC WAIT (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-wait-recv-obvious7:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC WAIT (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a= (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-wait-recv-obvious8:
mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog) σ =
(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#

fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)
then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog) (set-error-mem-waitr caller partner σ σ ′ error-mem msg))))

else if ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog) (set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))))

else if ioprog (IPC WAIT (RECV caller partner msg)) σ = None

EUROMILS D31.4 Page 234 of 438

D31.4 – Test-Generation Methods

then Some([], σ)
else id (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog) σ)

)
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6

EUROMILS D31.4 Page 235 of 438

D31.4 – Test-Generation Methods

proof (cases af)
fix ag bc
assume hyp7: af = (ag, bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-wait-recv-obvious8 ′:
mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#

fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒
Some(NO-ERRORS#

fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1

EUROMILS D31.4 Page 236 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some ab)
assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5:ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next

EUROMILS D31.4 Page 237 of 438

D31.4 – Test-Generation Methods

case (ERROR-IPC error-IPC)
assume hyp6:ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious9:
fst(the(mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#
fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog) (

set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)))

| None⇒ []))
by (simp split: option.split errors.split,auto)

4.19.4 Symbolic Execution rules on BUF stage
lemma abort-buf-send-obvious0:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

EUROMILS D31.4 Page 238 of 438

D31.4 – Test-Generation Methods

lemma abort-buf-send-obvious1:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-success: ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC BUF (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-bufs caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-buf-send-obvious2:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC BUF (SEND caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-buf-send-obvious3:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious4:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 239 of 438

D31.4 – Test-Generation Methods

case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg)= Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious5:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-succes : ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-dones caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-dones caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC BUF (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-buf-send-obvious7:
assumes in-err: caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC BUF (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis

EUROMILS D31.4 Page 240 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-send-obvious8:
assumes A: ∀ act σ . ioprog act σ 6= None
shows mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC BUF (SEND caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis

EUROMILS D31.4 Page 241 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)

fix ae bb
assume hyp5: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)

fix ag bc
assume hyp7: af = (ag, bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-buf-send-obvious8 ′:
mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

EUROMILS D31.4 Page 242 of 438

D31.4 – Test-Generation Methods

snd(the(mbind S (abortlif t ioprog) σ)))

else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒
Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
| Some(ERROR-MEM error-mem, σ ′)⇒

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)

EUROMILS D31.4 Page 243 of 438

D31.4 – Test-Generation Methods

assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5:ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6:ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed

EUROMILS D31.4 Page 244 of 438

D31.4 – Test-Generation Methods

qed
qed

qed
qed

qed
qed

lemma abort-buf-send-obvious9:
fst(the(mbind (IPC BUF (SEND caller partner msg)#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC BUF (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))
| Some(ERROR-MEM error-mem, σ ′)⇒

ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufs caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)))

| None⇒ []))
by (simp split: option.split errors.split,auto)

lemma abort-buf-recv-obvious0:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

lemma abort-buf-recv-obvious1:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC BUF (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-bufr caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-buf-recv-obvious2:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-succes: ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC BUF (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-buf-recv-obvious3:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success : ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)

EUROMILS D31.4 Page 245 of 438

D31.4 – Test-Generation Methods

shows mbind ((IPC BUF (RECV caller partner msg))#S) (abortlif t ioprog) σ =
Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious4:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem msg))))

using assms
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious5:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))),

EUROMILS D31.4 Page 246 of 438

D31.4 – Test-Generation Methods

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-doner caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-doner caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC BUF (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-buf-recv-obvious7:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC BUF (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-buf-recv-obvious8:
mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

EUROMILS D31.4 Page 247 of 438

D31.4 – Test-Generation Methods

else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC BUF (RECV caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg) = Some ad

EUROMILS D31.4 Page 248 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)

fix ae bb
assume hyp5: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)

fix ag bc
assume hyp7: af = (ag, bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-buf-recv-obvious8 ′:
mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis

EUROMILS D31.4 Page 249 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)

fix ae bb
assume hyp8: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5:ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

EUROMILS D31.4 Page 250 of 438

D31.4 – Test-Generation Methods

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6:ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious9:
fst(the(mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))
| Some(ERROR-MEM error-mem, σ ′)⇒

ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-bufr caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)))

EUROMILS D31.4 Page 251 of 438

D31.4 – Test-Generation Methods

| None⇒ []))
by(simp split: option.split errors.split,auto)

4.19.5 Symbolic Execution Rules on MAP stage
lemma abort-map-send-obvious0:

assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

lemma abort-map-send-obvious1:
assumes not-in-err : caller /∈ dom (act-info (th-flag σ))
and ioprog-success: ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC MAP (SEND caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-maps caller partner σ σ ′ error-mem msg))
using assms
by simp

lemma abort-map-send-obvious2:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC MAP (SEND caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-map-send-obvious3:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious4:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (SEND caller partner msg)) σ =

EUROMILS D31.4 Page 252 of 438

D31.4 – Test-Generation Methods

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg)= Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious5:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-succes : ioprog (IPC MAP (SEND caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-dones caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-dones caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC MAP (SEND caller partner msg)) σ =

EUROMILS D31.4 Page 253 of 438

D31.4 – Test-Generation Methods

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-map-send-obvious7:
assumes in-err: caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC MAP (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-send-obvious8:
assumes A: ∀ act σ . ioprog act σ 6= None
shows mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC MAP (SEND caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)

EUROMILS D31.4 Page 254 of 438

D31.4 – Test-Generation Methods

assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)
fix ag bc
assume hyp7: af = (ag, bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed

EUROMILS D31.4 Page 255 of 438

D31.4 – Test-Generation Methods

qed
qed

qed
qed

qed

lemma abort-map-send-obvious8 ′:
mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒
Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
| Some(ERROR-MEM error-mem, σ ′)⇒

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-maps caller partner σ σ ′ error-mem msg))))
| Some(ERROR-IPC error-IPC, σ ′)⇒

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-maps caller partner σ σ ′ error-IPC msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis

EUROMILS D31.4 Page 256 of 438

D31.4 – Test-Generation Methods

using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5:ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)
fix ae bb
assume hyp10: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6:ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 257 of 438

D31.4 – Test-Generation Methods

case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious9:
fst(the(mbind (IPC MAP (SEND caller partner msg)#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC MAP (SEND caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))
| Some(ERROR-MEM error-mem, σ ′)⇒

ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-maps caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ σ ′ error-IPC msg)))

| None⇒ []))
by (simp split: option.split errors.split,auto)

lemma abort-map-recv-obvious0:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(NO-ERRORS, σ ′)
shows abortlif t ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS, (error-tab-transfer

caller σ σ ′))
using assms
by simp

lemma abort-map-recv-obvious1:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows abortlif t ioprog (IPC MAP (RECV caller partner msg)) σ =

Some (ERROR-MEM error-mem, (set-error-mem-mapr caller partner σ σ ′ error-mem msg))
using assms
by simp

EUROMILS D31.4 Page 258 of 438

D31.4 – Test-Generation Methods

lemma abort-map-recv-obvious2:
assumes not-in-err: caller /∈ dom (act-info (th-flag σ))
and ioprog-succes: ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows abortlif t ioprog (IPC MAP (RECV caller partner msg)) σ =

Some (ERROR-IPC error-IPC, (set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))
using assms
by simp

lemma abort-map-recv-obvious3:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success : ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious4:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-MEM error-mem, σ ′)
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-mapr caller partner σ σ ′ error-mem msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-mapr caller partner σ σ ′ error-mem msg))))

using assms
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis

EUROMILS D31.4 Page 259 of 438

D31.4 – Test-Generation Methods

using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious5:
assumes not-in-err :caller /∈ dom (act-info (th-flag σ))
and ioprog-success:ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(ERROR-IPC error-IPC, σ ′)
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)
(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))),

snd(the(mbind S (abortlif t ioprog)
(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))))

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-doner caller partner σ σ ′ error-IPC msg))

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-doner caller partner σ σ ′ error-IPC msg) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows abortlif t ioprog (IPC MAP (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, σ)
using assms
by simp

lemma abort-map-recv-obvious7:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
shows mbind ((IPC MAP (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),
snd(the(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)

EUROMILS D31.4 Page 260 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using assms hyp0 hyp1
by simp

qed
qed

lemma abort-map-recv-obvious8:
mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))

else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′)
then Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),

snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))
else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′)

then Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-mapr caller partner σ σ ′ error-mem msg)))

,
snd(the(mbind S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg))))
else if ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′)
then Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))))
else if ioprog (IPC MAP (RECV caller partner msg)) σ = None

then Some([], σ)
else id (mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog) σ))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa,b)
then show ?thesis
using assms hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg) = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba

EUROMILS D31.4 Page 261 of 438

D31.4 – Test-Generation Methods

assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp4:mbindF ailSave S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases ad)
fix ae bb
assume hyp5: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))

case None
then show ?thesis
by simp

next
case (Some af)
assume hyp6: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ σ ′) = Some af
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases af)

fix ag bc
assume hyp7: af = (ag, bc)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by simp

qed
qed

qed
qed

qed
qed

qed
qed

lemma abort-map-recv-obvious8 ′:
mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog) σ =

(if caller ∈ dom (act-info (th-flag σ))
then Some(get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ)),

snd(the(mbind S (abortlif t ioprog) σ)))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

Some(NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))),
snd(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′))))

| Some(ERROR-MEM error-mem, σ ′)⇒
Some(ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ σ ′ error-mem msg)))
,

EUROMILS D31.4 Page 262 of 438

D31.4 – Test-Generation Methods

snd(the(mbind S (abortlif t ioprog)
(set-error-mem-mapr caller partner σ σ ′ error-mem msg))))

| Some(ERROR-IPC error-IPC, σ ′)⇒
Some(ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)))
,
snd(the(mbind S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg))))
| None⇒ Some([], σ)))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1:a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by simp

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using assms hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3: ab = (ac,ba)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp7: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7
proof (cases ad)
fix ae bb
assume hyp8: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp4 hyp7 hyp8
by simp

EUROMILS D31.4 Page 263 of 438

D31.4 – Test-Generation Methods

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp5:ac = ERROR-MEM error-memory
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp9: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-mapr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9
proof (cases ad)

fix ae bb
assume hyp10: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp5 hyp9 hyp10
by simp

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp6:ac = ERROR-IPC error-IPC
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp11: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11
proof (cases ad)
fix ae bb
assume hyp12: ad = (ae, bb)
then show ?thesis
using assms hyp0 hyp1 hyp2 hyp3 hyp6 hyp11 hyp12
by simp

qed
qed

qed
qed

qed
qed

qed

EUROMILS D31.4 Page 264 of 438

D31.4 – Test-Generation Methods

lemma abort-map-recv-obvious9:
fst(the(mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog) σ)) =

(if caller ∈ dom (act-info (th-flag σ))
then get-caller-error caller σ#fst(the(mbind S (abortlif t ioprog) σ))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of Some(NO-ERRORS, σ ′)⇒

NO-ERRORS#fst(the(mbind S (abortlif t ioprog) (error-tab-transfer caller σ σ ′)))
| Some(ERROR-MEM error-mem, σ ′)⇒

ERROR-MEM error-mem#fst(the(mbind S (abortlif t ioprog)
(set-error-mem-mapr caller partner σ σ ′ error-mem msg)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
ERROR-IPC error-IPC#fst(the(mbind S (abortlif t ioprog)

(set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)))
| None⇒ []))

by(simp split: option.split errors.split,auto)

4.19.6 Symbolic Execution Rules rules on DONE stage
lemma abort-done-send-obvious0:

assumes not-in-err:
caller /∈ dom ((act-info o th-flag) σ)

assumes ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
shows abortlif t ioprog (IPC DONE (SEND caller partner msg)) σ = Some(NO-ERRORS, σ)
using assms
by (simp split:option.split)

lemma abort-done-send-obvious1:
assumes not-in-err:caller /∈ dom ((act-info o th-flag) σ)
and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
and exec-success ′:mbind S (abortlif t ioprog) σ = Some(out ′,σ ′)
shows σ ′ = σ ′′

using assms
by auto

lemma abort-done-send-obvious2:
assumes not-in-err:caller /∈ dom ((act-info o th-flag) σ)
and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
shows mbind S (abortlif t ioprog) σ = Some(out ′,σ ′) =⇒ out ′′ = (NO-ERRORS#out ′)
using assms
by auto

lemma abort-done-send-obvious3:
assumes in-err:caller ∈ dom ((act-info o th-flag) σ)
shows abortlif t ioprog (IPC DONE (SEND caller partner msg)) σ =

Some(get-caller-error caller σ, remove-caller-error caller σ)
using assms
by simp

lemma abort-done-send-obvious4:
assumes in-err:caller ∈ dom ((act-info o th-flag) σ)
and exec-success:mbind ((IPC DONE (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
shows hd out ′′ = get-caller-error caller σ

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))

EUROMILS D31.4 Page 265 of 438

D31.4 – Test-Generation Methods

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) = Some a
then show ?thesis
using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by (simp, elim conjE, simp add: HOL.eq-sym-conv)

qed
qed

lemma abort-done-send-obvious5:
assumes in-err:caller ∈ dom ((act-info o th-flag) σ)
and exec-success:mbind ((IPC DONE (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and exec-success ′:mbind S (abortlif t ioprog) (σ(|th-flag := (th-flag σ)

(|act-info := ((act-info (th-flag σ))
(caller := None))|)|)) = Some(out ′,σ ′)

shows out ′′ = the (((act-info o th-flag) σ) caller) #out ′

using assms
by simp

lemma abort-done-send-obvious6:
assumes in-err:caller ∈ dom (act-info (th-flag σ))
and exec-success: mbind ((IPC DONE (SEND caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and exec-success ′: mbind S (abortlif t ioprog) (remove-caller-error caller σ) =

Some(out ′,σ ′)
shows σ ′′ = σ ′

using assms
by simp

lemma abort-done-send-obvious7:
assumes exec-success : mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog) σ =

Some (out ′,σ ′)
and ioprog-success:ioprog (IPC DONE (SEND caller partner msg)) σ 6= None

shows(if caller ∈ dom ((act-info o th-flag) σ)
then (case mbind S (abortlif t ioprog)(remove-caller-error caller σ)

of Some (out ′′,σ ′′)⇒ σ ′ = σ ′′)
else (case mbind S (abortlif t ioprog) σ

of Some (out ′′,σ ′′)⇒ σ ′ = σ ′′))
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
assume hyp0: caller ∈ dom (act-info (th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) (remove-caller-error caller σ))
case None
then show ?thesis
using assms hyp0
by simp

next

EUROMILS D31.4 Page 266 of 438

D31.4 – Test-Generation Methods

case (Some a)
assume hyp1:mbindF ailSave S (abortlif t ioprog) (remove-caller-error caller σ) =

Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0: caller /∈ dom (act-info (th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-send-obvious8:
assumes execu-success : mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog) σ =

Some (out ′,σ ′)
and ioprog-success: ioprog (IPC DONE (SEND caller partner msg)) σ 6= None
shows

(if caller ∈ dom ((act-info o th-flag) σ)
then (case mbind S (abortlif t ioprog)(remove-caller-error caller σ)

of Some (out ′′,σ ′′)⇒ out ′ = (get-caller-error caller σ #out ′′))
else (case mbind S (abortlif t ioprog) σ

of Some (out ′′,σ ′′)⇒ out ′ = (NO-ERRORS#out ′′)))
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
assume hyp0: caller ∈ dom (act-info (th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 267 of 438

D31.4 – Test-Generation Methods

case (Some a)
assume hyp1: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0 : caller /∈ dom (act-info (th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-send-obvious9:
mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog) σ =
(if caller ∈ dom ((act-info o th-flag) σ)
then Some (get-caller-error caller σ#

fst(the(mbind S (abortlif t ioprog)(remove-caller-error caller σ))),
snd(the(mbind S (abortlif t ioprog) (remove-caller-error caller σ))))

else (case ioprog (IPC DONE (SEND caller partner msg)) σ of None⇒ Some ([], σ)
| Some (out ′, σ ′)⇒

Some (NO-ERRORS# (fst o the)(mbind S (abortlif t ioprog) σ),
(snd o the)(mbind S (abortlif t ioprog) σ))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0

EUROMILS D31.4 Page 268 of 438

D31.4 – Test-Generation Methods

proof (cases a)
fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp add: split: option.split)

qed
qed

qed
qed

lemma abort-done-send-obvious10:
(fst o the)(mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog) σ) =
(if caller ∈ dom ((act-info o th-flag) σ)
then get-caller-error caller σ#

(fst o the)(mbind S (abortlif t ioprog) (remove-caller-error caller σ))
else
(case ioprog (IPC DONE (SEND caller partner msg)) σ of

None⇒ []
| Some (out ′, σ ′)⇒ NO-ERRORS# (fst o the)(mbind S (abortlif t ioprog) σ)))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2

EUROMILS D31.4 Page 269 of 438

D31.4 – Test-Generation Methods

proof (cases ab)
fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp split: option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious0:
assumes no-inerr:caller /∈ dom ((act-info o th-flag) σ)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows abortlif t ioprog (IPC DONE (RECV caller partner msg)) σ = Some(NO-ERRORS, σ)
using assms
by (simp split:option.split)

lemma abort-done-recv-obvious1:
assumes not-in-err:caller /∈ dom ((act-info o th-flag) σ)
and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows mbind S (abortlif t ioprog) σ = Some(out ′,σ ′) =⇒ σ ′ = σ ′′

using assms
by auto

lemma abort-done-recv-obvious2:
assumes not-inerr :caller /∈ dom ((act-info o th-flag) σ)
and exec-success :mbind ((IPC DONE (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows mbind S (abortlif t ioprog) σ = Some(out ′,σ ′) =⇒ out ′′ = (NO-ERRORS#out ′)
using assms
by auto

lemma abort-done-recv-obvious3:
assumes in-err: caller ∈ dom ((act-info o th-flag) σ)
shows abortlif t ioprog (IPC DONE (RECV caller partner msg)) σ =

Some(get-caller-error caller σ, remove-caller-error caller σ)
using assms
by simp

lemma abort-done-recv-obvious4:
assumes in-err:caller ∈ dom ((act-info o th-flag) σ)
and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
shows hd out ′′ = get-caller-error caller σ

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0:mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) = Some a
then show ?thesis

EUROMILS D31.4 Page 270 of 438

D31.4 – Test-Generation Methods

using assms hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1
by (simp, elim conjE, simp add: HOL.eq-sym-conv)

qed
qed

lemma abort-done-recv-obvious5:
assumes in-err:caller ∈ dom ((act-info o th-flag) σ)
and exec-success: mbind ((IPC DONE (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and exec-success ′:mbind S (abortlif t ioprog) (remove-caller-error caller σ) = Some(out ′,σ ′)
shows out ′′ = (get-caller-error caller σ #out ′)
using assms
by simp

lemma abort-done-recv-obvious6:
assumes in-err:caller ∈ dom ((act-info o th-flag) σ)
and exec-success:mbind ((IPC DONE (RECV caller partner msg))#S) (abortlif t ioprog) σ =

Some(out ′′,σ ′′)
and exec-success ′:mbind S (abortlif t ioprog) (remove-caller-error caller σ) =

Some(out ′,σ ′)
shows σ ′′ = σ ′

using assms
by simp

lemma abort-done-recv-obvious7:
assumes exec-success: mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog) σ =

Some (out ′,σ ′)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows (if caller ∈ dom ((act-info o th-flag) σ)

then (case mbind S (abortlif t ioprog)(remove-caller-error caller σ)
of Some (out ′′,σ ′′)⇒ σ ′ = σ ′′)

else (case mbind S (abortlif t ioprog) σ
of Some (out ′′,σ ′′)⇒ σ ′ = σ ′′))

proof (cases caller ∈ dom ((act-info o th-flag) σ))
case True
assume hyp0: caller ∈ dom ((act-info o th-flag) σ)
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) (remove-caller-error caller σ))
case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1:mbindF ailSave S (abortlif t ioprog) (remove-caller-error caller σ) =

Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
then show ?thesis

EUROMILS D31.4 Page 271 of 438

D31.4 – Test-Generation Methods

using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0: caller /∈ dom ((act-info o th-flag) σ)
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-recv-obvious8:
assumes exec-success : mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog) σ =

Some (out ′,σ ′)
and ioprog-success:ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
shows (if caller ∈ dom ((act-info o th-flag) σ)

then (case mbind S (abortlif t ioprog)(remove-caller-error caller σ)
of Some (out ′′,σ ′′)⇒ out ′ = (get-caller-error caller σ #out ′′))

else (case mbind S (abortlif t ioprog) σ
of Some (out ′′,σ ′′)⇒ out ′ = (NO-ERRORS#out ′′)))

proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
assume hyp0: caller ∈ dom (act-info (th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) (remove-caller-error caller σ))

case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1:mbindF ailSave S (abortlif t ioprog) (remove-caller-error caller σ) =

Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)
fix aa b
assume hyp2: a = (aa, b)
then show ?thesis

EUROMILS D31.4 Page 272 of 438

D31.4 – Test-Generation Methods

using assms hyp0 hyp1 hyp2
by simp

qed
qed

next
case False
assume hyp0: caller /∈ dom (act-info (th-flag σ))
then show ?thesis
using assms hyp0
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
then show ?thesis
using assms hyp0
by simp

next
case (Some a)
assume hyp1: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using assms hyp0 hyp1
proof (cases a)

fix aa b
assume hyp2: a = (aa, b)
then show ?thesis
using assms hyp0 hyp1 hyp2
by auto

qed
qed

qed

lemma abort-done-recv-obvious9:
mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog) σ =
(if caller ∈ dom ((act-info o th-flag) σ)
then Some ((get-caller-error caller σ#

fst(the(mbind S (abortlif t ioprog) (remove-caller-error caller σ)))),
snd(the(mbind S (abortlif t ioprog) (remove-caller-error caller σ))))

else(case ioprog (IPC DONE (RECV caller partner msg)) σ of None⇒ Some ([], σ)
| Some (out ′, σ ′)⇒

Some (NO-ERRORS# (fst o the)(mbind S (abortlif t ioprog) σ),
(snd o the)(mbind S (abortlif t ioprog) σ))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

EUROMILS D31.4 Page 273 of 438

D31.4 – Test-Generation Methods

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp split: option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious10:
fst(the(mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog) σ)) =
(if caller ∈ dom ((act-info o th-flag) σ)
then (get-caller-error caller σ#

fst(the(mbind S (abortlif t ioprog) (remove-caller-error caller σ))))
else
(case ioprog (IPC DONE (RECV caller partner msg)) σ of

None⇒ []
| Some (out ′, σ ′)⇒ NO-ERRORS# (fst o the)(mbind S (abortlif t ioprog) σ)))

by (simp split: option.split)

lemmas trace-normalizer-errors-case =
abort-prep-send-obvious9 abort-prep-recv-obvious9 abort-wait-send-obvious9
abort-wait-recv-obvious9 abort-buf-send-obvious9 abort-buf-recv-obvious9
abort-done-send-obvious10 abort-done-recv-obvious10

end

theory IPC-symbolic-exec-rewriting
imports IPC-trace-normalizer
begin

4.20 Rewriting Rules for Symbolic Execution of Sequence Test Scheme

4.20.1 Symbolic Execution Rules for PREP stage
lemma abort-prep-send-obvious10:
(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-preps caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-preps caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

EUROMILS D31.4 Page 274 of 438

D31.4 – Test-Generation Methods

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4

EUROMILS D31.4 Page 275 of 438

D31.4 – Test-Generation Methods

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-mem-preps caller partner σ ba error-memory msg))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-send-obvious12:
(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC PREP (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧

EUROMILS D31.4 Page 276 of 438

D31.4 – Test-Generation Methods

((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒
((set-error-mem-preps caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
Some (ERROR-MEM error-mem))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =
Some (ERROR-MEM error-mem)) ∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒

((set-error-ipc-preps caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =
Some (ERROR-IPC error-IPC)) ∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

EUROMILS D31.4 Page 277 of 438

D31.4 – Test-Generation Methods

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb

EUROMILS D31.4 Page 278 of 438

D31.4 – Test-Generation Methods

assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-send-obvious10 ′′:
(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC PREP (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→ ioprog (IPC PREP (SEND caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory. a = ERROR-MEM error-memory −→
ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-preps caller partner σ σ ′ error-memory msg)|=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
ioprog (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-preps caller partner σ σ ′ error-IPC msg)|=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis

EUROMILS D31.4 Page 279 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-preps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 280 of 438

D31.4 – Test-Generation Methods

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-send-obvious10 ′:
(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =
Some (NO-ERRORS, b) −→
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))) ∧

(∀ error-memory. a = ERROR-MEM error-memory −→
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =
Some (ERROR-MEM error-memory, b) −→
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory,

th-flag := th-flag σ
(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =
Some (ERROR-IPC error-IPC, b) −→
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := th-flag σ

(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)

case None
then show ?thesis

EUROMILS D31.4 Page 281 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) ba)

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) ba = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

EUROMILS D31.4 Page 282 of 438

D31.4 – Test-Generation Methods

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-preps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-preps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-SENDid-def
split : errors.split option.split split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-preps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-preps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6

EUROMILS D31.4 Page 283 of 438

D31.4 – Test-Generation Methods

by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
PREP-SENDid-def

split : errors.split option.split split-if-asm)
qed

qed
qed

qed
qed

qed
qed

lemma abort-prep-send-obvious11:
(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (exec-actionid-Mon-prep-fact0 caller partner σ msg ∧

exec-actionid-Mon-prep-fact1 caller partner σ −→
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))) ∧

(∀ error-memory. a = ERROR-MEM error-memory −→
((b = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND|)∧
¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-memory = not-valid-sender-addr-in-PREP-SEND)) −→

(σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory,
th-flag := th-flag σ
(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
((b = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND|)∧
exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬ IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-SEND) ∨

(b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬ IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-SEND)) −→

(σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
th-flag := th-flag σ

EUROMILS D31.4 Page 284 of 438

D31.4 – Test-Generation Methods

(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs)))))))

by (auto simp add: abort-prep-send-obvious10 ′ exec-actionid-Mon-prep-send-obvious3
exec-actionid-Mon-prep-send-obvious4 exec-actionid-Mon-prep-send-obvious5)

lemma abort-prep-recv-obvious10:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒ (error-tab-transfer caller σ σ ′) |=
(outs← (mbind (S)(abortlif t ioprog)); P (NO-ERRORS # outs))

| Some(ERROR-MEM error-mem, σ ′)⇒
((set-error-mem-prepr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis

EUROMILS D31.4 Page 285 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

EUROMILS D31.4 Page 286 of 438

D31.4 – Test-Generation Methods

proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious12:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC PREP (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧
((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-prepr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S (abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
Some (ERROR-MEM error-mem))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =
Some (ERROR-MEM error-mem)) ∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-prepr caller partner σ σ ′ error-IPC msg)|=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =

Some (ERROR-IPC error-IPC)) ∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis

EUROMILS D31.4 Page 287 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis

EUROMILS D31.4 Page 288 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious10 ′′:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind (S)(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC PREP (RECV caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC PREP (RECV caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind (S)(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧
(∀ error-memory.
a = ERROR-MEM error-memory −→
ioprog (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-prepr caller partner σ σ ′ error-memory msg)|=
(outs← (mbind (S)(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC.
a = ERROR-IPC error-IPC −→
ioprog (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-prepr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind (S)(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None

EUROMILS D31.4 Page 289 of 438

D31.4 – Test-Generation Methods

then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis

EUROMILS D31.4 Page 290 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-prepr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious10 ′:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
((∀ a b.
(a = NO-ERRORS −→
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some (NO-ERRORS, b) −→
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))) ∧

EUROMILS D31.4 Page 291 of 438

D31.4 – Test-Generation Methods

(∀ error-memory.
a = ERROR-MEM error-memory −→
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, b) −→
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory,
stateid.th-flag := th-flag σ

(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) −→
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := th-flag σ

(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs))))))))
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) (error-tab-transfer caller σ ba))

case None
then show ?thesis

EUROMILS D31.4 Page 292 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-RECVid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-RECVid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-prepr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-prepr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-RECVid-def

EUROMILS D31.4 Page 293 of 438

D31.4 – Test-Generation Methods

split : errors.split option.split split-if-asm)
qed

qed
next

case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-prepr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-prepr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

PREP-RECVid-def
split : errors.split option.split split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-prep-recv-obvious11:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
((∀ a b.
(a = NO-ERRORS −→
exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
exec-actionid-Mon-prep-fact1 caller partner σ −→
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))) ∧

(∀ error-memory.
a = ERROR-MEM error-memory −→
((b= σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV|)∧

¬(list-all ((is-part-mem-th o the) ((thread-list σ) caller) (resource σ))msg) ∧
error-memory = not-valid-receiver-addr-in-PREP-RECV)) −→
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),

EUROMILS D31.4 Page 294 of 438

D31.4 – Test-Generation Methods

error-codes := ERROR-MEM error-memory,
stateid.th-flag := th-flag σ

(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
((b = σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
IPC-params-c2 ((the o thread-list σ) partner) ∧
¬IPC-params-c6 caller ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-22-in-PREP-RECV) ∨

(b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV|)∧

exec-actionid-Mon-prep-fact0 caller partner σ msg ∧
¬IPC-params-c1 ((the o thread-list σ) partner) ∧
¬IPC-params-c2 ((the o thread-list σ) partner) ∧
error-IPC = error-IPC-23-in-PREP-RECV)) −→
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := th-flag σ

(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs))))))))
by (auto simp add: abort-prep-recv-obvious10 ′ exec-actionid-Mon-prep-recv-obvious3

exec-actionid-Mon-prep-recv-obvious4 exec-actionid-Mon-prep-recv-obvious5)

4.20.2 Symbolic Execution Rules for WAIT stage
lemma abort-wait-send-obvious10:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒ (error-tab-transfer caller σ σ ′)
|= (outs← (mbind (S)(abortlif t ioprog)); P (NO-ERRORS # outs))

| Some(ERROR-MEM error-mem, σ ′)⇒
((set-error-mem-waits caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-waits caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis

EUROMILS D31.4 Page 295 of 438

D31.4 – Test-Generation Methods

using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg) = Some ad
then show ?thesis

EUROMILS D31.4 Page 296 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious12:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC WAIT (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′)|=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧
((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-waits caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧
(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =

Some (ERROR-MEM error-mem))∧
(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =

Some (ERROR-MEM error-mem)) ∧

EUROMILS D31.4 Page 297 of 438

D31.4 – Test-Generation Methods

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒

((set-error-ipc-waits caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =

Some (ERROR-IPC error-IPC)) ∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb

EUROMILS D31.4 Page 298 of 438

D31.4 – Test-Generation Methods

assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

EUROMILS D31.4 Page 299 of 438

D31.4 – Test-Generation Methods

qed

lemma abort-wait-send-obvious10 ′′:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC WAIT (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧
(∀ error-memory. a = ERROR-MEM error-memory −→
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-waits caller partner σ σ ′ error-memory msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-waits caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None

EUROMILS D31.4 Page 300 of 438

D31.4 – Test-Generation Methods

then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waits caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waits caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)

EUROMILS D31.4 Page 301 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious10 ′:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b.
(a = NO-ERRORS −→
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some (NO-ERRORS, b) −→
((σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) −→

((σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := th-flag σ
(|act-info := ((act-info o th-flag)σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs)))))))

proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some ab
then show ?thesis

EUROMILS D31.4 Page 302 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) (error-tab-transfer caller σ ba) =

Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: WAIT-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm option.split-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: PREP-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-waits caller partner σ ba error-memory msg))
case None

EUROMILS D31.4 Page 303 of 438

D31.4 – Test-Generation Methods

then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-waits caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-SENDid-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-waits caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-waits caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-SENDid-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-send-obvious11:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (IPC-send-comm-check-stid caller partner σ ∧

EUROMILS D31.4 Page 304 of 438

D31.4 – Test-Generation Methods

IPC-params-c4 caller partner ∧ IPC-params-c5 partner σ −→
((σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC.
(
¬ IPC-send-comm-check-stid caller partner σ −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-WAIT-SEND# outs)))) ∧
(a = ERROR-IPC error-IPC −→
IPC-send-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→

b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND|) ∧

error-IPC = error-IPC-3-in-WAIT-SEND) ∧
(IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→

b = update-state-wait-send-params5 σ caller ∧
error-codes (update-state-wait-send-params5 σ caller) = ERROR-IPC error-IPC) ∧
¬ IPC-params-c5 partner σ))) −→
((σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
th-flag := th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs))))))))
by (auto simp add: abort-wait-send-obvious10 ′ exec-actionid-Mon-wait-send-obvious3

exec-actionid-Mon-wait-send-obvious4)

lemma abort-wait-recv-obvious10:
(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

EUROMILS D31.4 Page 305 of 438

D31.4 – Test-Generation Methods

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

EUROMILS D31.4 Page 306 of 438

D31.4 – Test-Generation Methods

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious12:
(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC WAIT (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧
((act-info o th-flag) σ) caller =

EUROMILS D31.4 Page 307 of 438

D31.4 – Test-Generation Methods

((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-waitr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
Some (ERROR-MEM error-mem))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =
Some (ERROR-MEM error-mem)) ∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒

((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =
Some (ERROR-IPC error-IPC)) ∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis

EUROMILS D31.4 Page 308 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by (auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis

EUROMILS D31.4 Page 309 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious10 ′′:
(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC WAIT (RECV caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→ ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory. a = ERROR-MEM error-memory −→
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-waitr caller partner σ σ ′ error-memory msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧
(∀ error-IPC. a = ERROR-IPC error-IPC −→

ioprog (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3

EUROMILS D31.4 Page 310 of 438

D31.4 – Test-Generation Methods

proof (cases ac)
case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-waitr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)

EUROMILS D31.4 Page 311 of 438

D31.4 – Test-Generation Methods

assume hyp5: mbindF ailSave S (abortlif t ioprog)
(set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious10 ′:
(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ =

Some (NO-ERRORS, b) −→
((σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ |))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) −→
((σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ)

EUROMILS D31.4 Page 312 of 438

D31.4 – Test-Generation Methods

case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: WAIT-RECVid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm option.split-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next

EUROMILS D31.4 Page 313 of 438

D31.4 – Test-Generation Methods

case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-waitr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-waitr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-RECVid-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-waitr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-waitr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

WAIT-RECVid-def
split : errors.split option.split option.split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-wait-recv-obvious11:

EUROMILS D31.4 Page 314 of 438

D31.4 – Test-Generation Methods

(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs)) =

((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (IPC-recv-comm-check-stid caller partner σ ∧

IPC-params-c4 caller partner ∧ IPC-params-c5 partner σ −→
((σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC.
(
¬ IPC-recv-comm-check-stid caller partner σ −→
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-WAIT-RECV# outs)))) ∧
(a = ERROR-IPC error-IPC −→
IPC-recv-comm-check-stid caller partner σ −→
((¬ IPC-params-c4 caller partner −→

b = σ(|current-thread := caller ,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV|) ∧

error-IPC = error-IPC-3-in-WAIT-RECV) ∧
(IPC-params-c4 caller partner −→
((¬ IPC-params-c5 partner σ −→

b = update-state-wait-recv-params5 σ caller ∧
error-codes (update-state-wait-recv-params5 σ caller) = ERROR-IPC error-IPC) ∧
¬ IPC-params-c5 partner σ))) −→

((σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs))))))))
by (auto simp add: abort-wait-recv-obvious10 ′ exec-actionid-Mon-wait-recv-obvious3

exec-actionid-Mon-wait-recv-obvious4)

4.20.3 Symbolic Execution Rules for BUF stage
lemma abort-buf-send-obvious10:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC BUF (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(error-tab-transfer caller σ σ ′) |=

EUROMILS D31.4 Page 315 of 438

D31.4 – Test-Generation Methods

(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufs caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed

EUROMILS D31.4 Page 316 of 438

D31.4 – Test-Generation Methods

qed
next

case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious12:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))

EUROMILS D31.4 Page 317 of 438

D31.4 – Test-Generation Methods

then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC BUF (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧
((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufs caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
Some (ERROR-MEM error-mem))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =
Some (ERROR-MEM error-mem)) ∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒

((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =
Some (ERROR-IPC error-IPC)) ∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

EUROMILS D31.4 Page 318 of 438

D31.4 – Test-Generation Methods

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

EUROMILS D31.4 Page 319 of 438

D31.4 – Test-Generation Methods

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious10 ′′:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC BUF (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→ ioprog (IPC BUF (SEND caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧
(∀ error-memory. a = ERROR-MEM error-memory −→

ioprog (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-bufs caller partner σ σ ′ error-memory msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
ioprog (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis

EUROMILS D31.4 Page 320 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufs caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

EUROMILS D31.4 Page 321 of 438

D31.4 – Test-Generation Methods

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-send-obvious10 ′:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ =

Some (NO-ERRORS, b) −→
((σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) −→
((σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)

case None
then show ?thesis

EUROMILS D31.4 Page 322 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) ba)

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) ba = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: BUF-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm option.split-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

EUROMILS D31.4 Page 323 of 438

D31.4 – Test-Generation Methods

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-bufs caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-bufs caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

BUF-SENDid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-bufs caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-bufs caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6

EUROMILS D31.4 Page 324 of 438

D31.4 – Test-Generation Methods

by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def
BUF-SENDid-def

split : errors.split option.split list.split-asm split-if-asm)
qed

qed
qed

qed
qed

qed
qed

lemma abort-buf-send-obvious11:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ IPC-buf-check-stid caller partner σ −→
((σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(a = ERROR-IPC error-IPC-1-in-BUF-SEND −→
¬ IPC-buf-check-stid caller partner σ −→
((σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))))))
by (simp add: abort-buf-send-obvious10 ′ exec-actionid-Mon-buf-send-obvious3, auto)

lemma abort-buf-recv-obvious10:
(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg) |=

EUROMILS D31.4 Page 325 of 438

D31.4 – Test-Generation Methods

(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4

EUROMILS D31.4 Page 326 of 438

D31.4 – Test-Generation Methods

proof (cases mbindF ailSave S (abortlif t ioprog)
(set-error-mem-bufr caller partner σ ba error-memory msg))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious12:
(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC BUF (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧

EUROMILS D31.4 Page 327 of 438

D31.4 – Test-Generation Methods

((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-bufr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
Some (ERROR-MEM error-mem))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =
Some (ERROR-MEM error-mem)) ∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒

((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =

Some (ERROR-IPC error-IPC))∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =

Some (ERROR-IPC error-IPC)) ∧
(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None

EUROMILS D31.4 Page 328 of 438

D31.4 – Test-Generation Methods

then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)

EUROMILS D31.4 Page 329 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious10 ′′:
(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC BUF (RECV caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.

(a = NO-ERRORS −→ ioprog (IPC BUF (RECV caller partner msg)) σ =
Some (NO-ERRORS, σ ′) −→

((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧

(∀ error-memory. a = ERROR-MEM error-memory −→
ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-bufr caller partner σ σ ′ error-memory msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
ioprog (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis

EUROMILS D31.4 Page 330 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-bufr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 331 of 438

D31.4 – Test-Generation Methods

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious10 ′:
(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ =

Some (NO-ERRORS, b) −→
((σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) −→
((σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC# outs)))))))
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)

case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis

EUROMILS D31.4 Page 332 of 438

D31.4 – Test-Generation Methods

using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) ba)

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) ba = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: BUF-RECVid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis

EUROMILS D31.4 Page 333 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-bufr caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-bufr caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

BUF-RECVid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-bufr caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-bufr caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

BUF-RECVid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

EUROMILS D31.4 Page 334 of 438

D31.4 – Test-Generation Methods

qed
qed

qed
qed

qed

lemma abort-buf-recv-obvious11:
(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ IPC-buf-check-stid caller partner σ −→
((σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC-1-in-BUF-RECV −→
¬IPC-buf-check-stid caller partner σ −→
((σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV))|)|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-RECV# outs)))))))
by (simp add: abort-buf-recv-obvious10 ′ exec-actionid-Mon-buf-recv-obvious3, auto)

4.20.4 Symbolic Execution Rules for MAP stage
lemma abort-map-send-obvious10:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC MAP (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-maps caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None

EUROMILS D31.4 Page 335 of 438

D31.4 – Test-Generation Methods

then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis

EUROMILS D31.4 Page 336 of 438

D31.4 – Test-Generation Methods

by simp
next

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious12:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC MAP (SEND caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs))) ∧
(((act-info o th-flag) σ) caller = None) ∧
(((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller) ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′))
| Some(ERROR-MEM error-mem, σ ′)⇒

EUROMILS D31.4 Page 337 of 438

D31.4 – Test-Generation Methods

((set-error-mem-maps caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
Some (ERROR-MEM error-mem))∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =
Some (ERROR-MEM error-mem)) ∧

(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner)
| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =
Some (ERROR-IPC error-IPC)) ∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner)
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)

EUROMILS D31.4 Page 338 of 438

D31.4 – Test-Generation Methods

assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed

EUROMILS D31.4 Page 339 of 438

D31.4 – Test-Generation Methods

qed
qed

qed
qed

qed
qed

lemma abort-map-send-obvious10 ′′:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC MAP (SEND caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→ ioprog (IPC MAP (SEND caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |= (outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧
(∀ error-memory. a = ERROR-MEM error-memory −→
ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-maps caller partner σ σ ′ error-memory msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
ioprog (IPC MAP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis

EUROMILS D31.4 Page 340 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5

EUROMILS D31.4 Page 341 of 438

D31.4 – Test-Generation Methods

proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious10 ′:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ =

Some (NO-ERRORS, b) −→
((σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))))))

proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ)

case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

EUROMILS D31.4 Page 342 of 438

D31.4 – Test-Generation Methods

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) ba)

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) ba = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: MAP-SENDid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm option.split-asm)
next

case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 343 of 438

D31.4 – Test-Generation Methods

case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-SENDid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-SENDid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-send-obvious11:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→
((σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

EUROMILS D31.4 Page 344 of 438

D31.4 – Test-Generation Methods

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))))))

by (simp add: abort-map-send-obvious10 ′ exec-actionid-Mon-map-send-obvious3)

lemma abort-map-recv-obvious10:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs))
| Some(ERROR-MEM error-mem, σ ′)⇒

((set-error-mem-mapr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))

| Some(ERROR-IPC error-IPC, σ ′)⇒
((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))

| None⇒ (σ |= (P []))))
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS

EUROMILS D31.4 Page 345 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)

fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis

EUROMILS D31.4 Page 346 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious12:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then (σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (case ioprog (IPC MAP (RECV caller partner msg)) σ of

Some(NO-ERRORS, σ ′)⇒
(((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs)))∧
(((act-info o th-flag) σ) caller = None) ∧
(((act-info o th-flag) σ) caller =
((act-info o th-flag) (error-tab-transfer caller σ σ ′)) caller) ∧
(th-flag σ = th-flag (error-tab-transfer caller σ σ ′)))

| Some(ERROR-MEM error-mem, σ ′)⇒
(((set-error-mem-mapr caller partner σ σ ′ error-mem msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs)))∧
(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =

Some (ERROR-MEM error-mem))∧
(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner =

Some (ERROR-MEM error-mem)) ∧
(((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) caller =
((act-info o th-flag) (set-error-mem-maps caller partner σ σ ′ error-mem msg)) partner))
| Some(ERROR-IPC error-IPC, σ ′)⇒

(((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)
|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs)))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
Some (ERROR-IPC error-IPC))∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner =
Some (ERROR-IPC error-IPC)) ∧

(((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) caller =
((act-info o th-flag) (set-error-ipc-maps caller partner σ σ ′ error-IPC msg)) partner))
| None⇒ (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)

EUROMILS D31.4 Page 347 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)

EUROMILS D31.4 Page 348 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious10 ′′:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
(σ |= (outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧
(caller /∈ dom ((act-info o th-flag)σ) −→
(ioprog (IPC MAP (RECV caller partner msg)) σ = None −→ (σ |= (P []))) ∧
((∀ a σ ′.
(a = NO-ERRORS −→ ioprog (IPC MAP (RECV caller partner msg)) σ = Some (NO-ERRORS, σ ′) −→
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S(abortlif t ioprog));P (NO-ERRORS # outs)))) ∧
(∀ error-memory. a = ERROR-MEM error-memory −→

ioprog (IPC MAP (RECV caller partner msg)) σ = Some (ERROR-MEM error-memory, σ ′) −→
((set-error-mem-maps caller partner σ σ ′ error-memory msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-memory # outs)))) ∧

(∀ error-IPC. a = ERROR-IPC error-IPC −→
ioprog (IPC MAP (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, σ ′) −→
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))))))))

proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next

EUROMILS D31.4 Page 349 of 438

D31.4 – Test-Generation Methods

case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by (simp add: valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: ioprog (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba))

case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog) (error-tab-transfer caller σ ba) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)

EUROMILS D31.4 Page 350 of 438

D31.4 – Test-Generation Methods

assume hyp5: mbindF ailSave S (abortlif t ioprog)
(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad

then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t ioprog)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(simp add: valid-SE-def bind-SE-def)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious10 ′:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→ exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ =

Some (NO-ERRORS, b) −→
((σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

EUROMILS D31.4 Page 351 of 438

D31.4 – Test-Generation Methods

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))))))

proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) σ)
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t exec-actionid-Mon) σ = Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa , b)
then show ?thesis
using hyp0 hyp1
proof (cases exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ)
case None
then show ?thesis
using assms hyp0 hyp1
by(simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def)

next
case (Some ab)
assume hyp2: exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3:ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
proof (cases ac)

case NO-ERRORS
assume hyp4: ac = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon) ba)
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon) ba = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
proof (cases error-codes ba)

case NO-ERRORS
assume hyp7:error-codes ba = NO-ERRORS
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: MAP-RECVid-def valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm option.split-asm)

EUROMILS D31.4 Page 352 of 438

D31.4 – Test-Generation Methods

next
case (ERROR-MEM error-memory)
assume hyp7:error-codes ba = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
next

case (ERROR-IPC error-IPC)
assume hyp7:error-codes ba = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6 hyp7
by (auto simp add: valid-SE-def bind-SE-def exec-actionid-Mon-def

split: split-if-asm)
qed

qed
qed

next
case (ERROR-MEM error-memory)
assume hyp4:ac = ERROR-MEM error-memory
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-mem-maps caller partner σ ba error-memory msg) = Some ad
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-RECVid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

next
case (ERROR-IPC error-IPC)
assume hyp4:ac = ERROR-IPC error-IPC
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4
proof (cases mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg))
case None
then show ?thesis
by simp

next
case (Some ad)
assume hyp5: mbindF ailSave S (abortlif t exec-actionid-Mon)

(set-error-ipc-maps caller partner σ ba error-IPC msg) = Some ad
then show ?thesis

EUROMILS D31.4 Page 353 of 438

D31.4 – Test-Generation Methods

using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5
proof (cases ad)
fix ae bb
assume hyp6: ad = (ae, bb)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3 hyp4 hyp5 hyp6
by(auto simp add: exec-actionid-Mon-def valid-SE-def bind-SE-def

MAP-RECVid-def
split : errors.split option.split list.split-asm split-if-asm)

qed
qed

qed
qed

qed
qed

qed

lemma abort-map-recv-obvious11:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) −→
(∀ a b. (a = NO-ERRORS −→
((σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs)))))))

by (simp add:abort-map-recv-obvious10 ′ exec-actionid-Mon-map-recv-obvious3)

4.20.5 Symbolic Execution Rules for DONE stage
lemma abort-done-send-obvious11:

(σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then ((remove-caller-error caller σ) |=

(outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else (if ioprog (IPC DONE (SEND caller partner msg)) σ 6= None

then (σ |= (outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

EUROMILS D31.4 Page 354 of 438

D31.4 – Test-Generation Methods

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add: valid-SE-def bind-SE-def split: option.split)

qed
qed

qed
qed

lemma abort-done-send-obvious12:
(σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom ((act-info o th-flag)σ)
then ((((remove-caller-error caller σ) |=

(outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs))) ∧
(((act-info o th-flag) (remove-caller-error caller σ)) caller = None) ∧

caller 6= partner ∧
(((act-info o th-flag) σ) partner =
((act-info o th-flag) (remove-caller-error caller σ)) partner)) ∨

(((remove-caller-error caller σ) |=
(outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs))) ∧

(((act-info o th-flag) (remove-caller-error caller σ)) caller = None) ∧
caller = partner ∧

(((act-info o th-flag) (remove-caller-error caller σ)) partner = None)))
else (if ioprog (IPC DONE (SEND caller partner msg)) σ 6= None

then (σ |= (outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None

EUROMILS D31.4 Page 355 of 438

D31.4 – Test-Generation Methods

then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add: valid-SE-def bind-SE-def split: option.split)

qed
qed

qed
qed

lemma abort-done-send-obvious11 ′:
(σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
((remove-caller-error caller σ) |=
(outs← (mbind S(abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) ∧
ioprog (IPC DONE (SEND caller partner msg)) σ 6= None −→
(σ |=(outs← (mbind S(abortlif t ioprog)); P (NO-ERRORS # outs))))∧
(caller /∈ dom (act-info (th-flag σ)) ∧
ioprog (IPC DONE (SEND caller partner msg)) σ = None −→
(σ |=(P[]))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3

EUROMILS D31.4 Page 356 of 438

D31.4 – Test-Generation Methods

by (simp add: valid-SE-def bind-SE-def split: option.split)
qed

qed
qed

qed

lemma abort-done-recv-obvious11:
(σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then ((remove-caller-error caller σ) |=

(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs)))
else
(if ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
then (σ |= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add: valid-SE-def bind-SE-def split: option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious12:
(σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
(if caller ∈ dom (act-info (th-flag σ))
then ((((remove-caller-error caller σ) |=

(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) ∧
(((act-info o th-flag) (remove-caller-error caller σ)) caller = None) ∧

EUROMILS D31.4 Page 357 of 438

D31.4 – Test-Generation Methods

caller 6= partner ∧
(((act-info o th-flag) σ) partner =
((act-info o th-flag) (remove-caller-error caller σ)) partner)) ∨

(((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) ∧
(((act-info o th-flag) (remove-caller-error caller σ)) caller = None) ∧

caller = partner ∧
(((act-info o th-flag) (remove-caller-error caller σ)) partner = None)))

else
(if ioprog (IPC DONE (RECV caller partner msg)) σ 6= None
then (σ |= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs)))
else (σ |= (P []))))

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)
fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (auto simp add: valid-SE-def bind-SE-def split: option.split)

qed
qed

qed
qed

lemma abort-done-recv-obvious11 ′:
(σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog)); P outs)) =
((caller ∈ dom ((act-info o th-flag)σ) −→
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs)))) ∧

(caller /∈ dom ((act-info o th-flag)σ) ∧
ioprog (IPC DONE (RECV caller partner msg)) σ 6= None −→
(σ |=(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs)))) ∧
(caller /∈ dom (act-info (th-flag σ)) ∧
ioprog (IPC DONE (RECV caller partner msg)) σ = None −→ (σ |= (P []))))

EUROMILS D31.4 Page 358 of 438

D31.4 – Test-Generation Methods

proof (cases mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ))
case None
then show ?thesis
by simp

next
case (Some a)
assume hyp0: mbindF ailSave S (abortlif t ioprog)(remove-caller-error caller σ) =

Some a
then show ?thesis
using hyp0
proof (cases a)

fix aa b
assume hyp1: a = (aa, b)
then show ?thesis
using hyp0 hyp1
proof (cases mbindF ailSave S (abortlif t ioprog) σ)
case None
then show ?thesis
by simp

next
case (Some ab)
assume hyp2: mbindF ailSave S (abortlif t ioprog) σ = Some ab
then show ?thesis
using hyp0 hyp1 hyp2
proof (cases ab)

fix ac ba
assume hyp3: ab = (ac, ba)
then show ?thesis
using hyp0 hyp1 hyp2 hyp3
by (simp add: valid-SE-def bind-SE-def split:option.split)

qed
qed

qed
qed

lemmas trace-normalizer-errors-TestGen =
abort-prep-send-obvious10 abort-prep-recv-obvious10 abort-wait-send-obvious10
abort-wait-recv-obvious10 abort-buf-send-obvious10 abort-buf-recv-obvious10
abort-done-send-obvious11 abort-done-recv-obvious11 valid-SE-def bind-SE-def
unit-SE-def

lemmas trace-normalizer-errors-exec-conj-imp-TestGen =
abort-prep-send-obvious10 ′ abort-prep-recv-obvious10 ′ abort-wait-send-obvious10 ′

abort-wait-recv-obvious10 ′ abort-buf-send-obvious10 ′ abort-buf-recv-obvious10 ′

abort-done-send-obvious11 ′ abort-done-recv-obvious11 ′

end

theory IPC-symbolic-exec-intros
imports IPC-symbolic-exec-rewriting
begin

EUROMILS D31.4 Page 359 of 438

D31.4 – Test-Generation Methods

4.21 Introduction Rules for Sequence Testing Scheme

4.21.1 Introduction Rules for PREP stage
lemma abort-prep-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |= (outs← (mbind (S)(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs)))
and not-in-err-state1:∧

a b. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=

(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))
and not-in-err-state2:∧

a b error-memory. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
a = ERROR-MEM error-memory =⇒
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ =

Some (ERROR-MEM error-memory, b) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory,
stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)|)
|= (outs← (mbind (S)(abortlif t exec-actionid-Mon));

P (ERROR-MEM error-memory # outs)))
and not-in-err-state3:∧

a b error-IPC. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC PREP (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind (S)(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC# outs)))

shows (σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

using assms
by (simp add: abort-prep-send-obvious10 ′)

lemma abort-prep-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |= (outs← (mbind (S)(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs)))
and not-in-err-state1:

EUROMILS D31.4 Page 360 of 438

D31.4 – Test-Generation Methods

∧
b. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))

and not-in-err-state2:∧
b error-memory.

caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ =

Some (ERROR-MEM error-memory, b) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM error-memory,
stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-MEM error-memory),
partner 7→ (ERROR-MEM error-memory))|)|)
|= (outs← (mbind S (abortlif t exec-actionid-Mon));

P (ERROR-MEM error-memory # outs)))
and not-in-err-state3:∧

b error-IPC. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
exec-actionid-Mon (IPC PREP (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs)))
shows (σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs))
using assms
by (simp add: abort-prep-recv-obvious10 ′)

4.21.2 Introduction rules for WAIT stage
lemma abort-wait-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
σ |= (outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs))

and not-in-err-state1:∧
a b. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

and not-in-err-state3:∧
a b error-IPC. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒

a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC WAIT (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) =⇒
σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ

EUROMILS D31.4 Page 361 of 438

D31.4 – Test-Generation Methods

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs))
shows σ |= (outs ← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t exec-actionid-Mon)); P

outs)
using assms
by (simp add: abort-wait-send-obvious10 ′)

lemma abort-wait-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
σ |= (outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs))

and not-in-err-state1:∧
a b. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS|) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

and not-in-err-state2:∧
a b error-IPC. caller /∈ dom (act-info (stateid.th-flag σ)) =⇒

a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC WAIT (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) =⇒
σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)

|= (outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (ERROR-IPC error-IPC# outs))
shows σ |= (outs ← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t exec-actionid-Mon)); P

outs)
using assms
by (auto simp: abort-wait-recv-obvious10 ′ in-err-state)

4.21.3 Introduction rules rules for BUF stage
lemma abort-buf-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1:∧

a b. caller /∈ dom (act-info (th-flag σ)) =⇒
a = NO-ERRORS =⇒

exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner

EUROMILS D31.4 Page 362 of 438

D31.4 – Test-Generation Methods

(thread-list σ)),
error-codes := NO-ERRORS|) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

and not-in-err-state2:∧
a b error-IPC. caller /∈ dom (act-info (th-flag σ)) =⇒

a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC BUF (SEND caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) =⇒
σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (ERROR-IPC error-IPC # outs))

shows σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs)

using assms
by (auto simp : abort-buf-send-obvious10 ′)

lemma abort-buf-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1:∧

a b. caller /∈ dom (act-info (th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)|=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

and not-in-err-state2:∧
a b error-IPC. caller /∈ dom (act-info (th-flag σ)) =⇒

a = ERROR-IPC error-IPC =⇒
exec-actionid-Mon (IPC BUF (RECV caller partner msg)) σ = Some (ERROR-IPC error-IPC, b) =⇒
σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC,
stateid.th-flag := stateid.th-flag σ
(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC),
partner 7→ (ERROR-IPC error-IPC))|)|)|=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (ERROR-IPC error-IPC # outs))

shows σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs)

using assms
by (auto simp: abort-buf-recv-obvious10 ′)

EUROMILS D31.4 Page 363 of 438

D31.4 – Test-Generation Methods

4.21.4 Introduction rules for MAP stage
lemma abort-map-send-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1:∧

a b. caller /∈ dom (act-info (th-flag σ)) =⇒
a = NO-ERRORS =⇒

exec-actionid-Mon (IPC MAP (SEND caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

shows σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs)

using assms
by (auto simp : abort-map-send-obvious10 ′)

lemma abort-map-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));

P (get-caller-error caller σ # outs))
and not-in-err-state1:∧

a b. caller /∈ dom (act-info (th-flag σ)) =⇒
a = NO-ERRORS =⇒
exec-actionid-Mon (IPC MAP (RECV caller partner msg)) σ = Some (NO-ERRORS, b) =⇒
σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS|)|=
(outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

shows σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs)

using assms
by (auto simp: abort-map-recv-obvious10 ′)

4.21.5 Introduction rules for DONE stage
lemma abort-done-send-mbind-TestGen-Pure-intro:

assumes in-err-state:
(caller ∈ dom (act-info (th-flag σ)) =⇒
(remove-caller-error caller σ) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))

and not-in-err-state1:
(caller /∈ dom (act-info (stateid.th-flag σ)) =⇒

EUROMILS D31.4 Page 364 of 438

D31.4 – Test-Generation Methods

σ |= (outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))
shows σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)

(abortlif t exec-actionid-Mon)); P outs)
using assms
by (simp add: abort-done-send-obvious11 exec-actionid-Mon-def)

lemma abort-done-recv-mbind-TestGen-Pure-intro:
assumes in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
(remove-caller-error caller σ) |=
(outs← (mbind (S)(abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs))

and not-in-err-state1:
caller /∈ dom (act-info (stateid.th-flag σ)) =⇒
σ |= (outs← (mbind (S)(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))

shows σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs)

using assms
by (simp add: abort-done-recv-obvious11 exec-actionid-Mon-def)

end

theory IPC-symbolic-exec-elims
imports IPC-symbolic-exec-rewriting IPC-symbolic-exec-intros ../../../../src/TestLib
begin

4.22 Elimination rules for Symbolic Execution of a Test Specification

lemma threa-table-obvious:
(caller /∈ dom (act-info (th-flag σ))) = (act-info (th-flag σ) caller = None)
by auto

lemma threa-table-obvious ′:
(act-info (th-flag σ) caller = None) = (caller /∈ dom (act-info (th-flag σ)))
by auto

4.22.1 Symbolic Execution rules for PREP SEND

HOL representation

lemma abort-prep-send-mbindFSave-E:
assumes valid-exec:

(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog));P outs))
and in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′)
|= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=

EUROMILS D31.4 Page 365 of 438

D31.4 – Test-Generation Methods

(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-prep-send-HOL-elim21:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒

EUROMILS D31.4 Page 366 of 438

D31.4 – Test-Generation Methods

(σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND,
stateid.th-flag := th-flag σ
(|act-info := (act-info (th-flag σ))
(caller 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND),
partner 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-MEM not-valid-sender-addr-in-PREP-SEND # outs)))=⇒ Q
and
not-in-err-exec31:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒
(σ(|current-thread := caller,
thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND,
th-flag := th-flag σ

(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec32:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND,
th-flag := th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec33:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒

IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q

shows Q
apply (insert valid-exec)

apply (elim abort-prep-send-mbindFSave-E)
apply (simp add: in-err-exec)
apply (simp add: exec-actionid-Mon-prep-send-obvious3)
apply auto
apply (erule contrapos-np)

EUROMILS D31.4 Page 367 of 438

D31.4 – Test-Generation Methods

apply simp
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-prep-send-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-actionid-Mon-prep-send-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec32)
apply (simp add: exec-actionid-Mon-def)
done

4.22.2 Symbolic Execution rules for PREP RECV
lemma abort-prep-recv-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

EUROMILS D31.4 Page 368 of 438

D31.4 – Test-Generation Methods

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-prep-recv-HOL-elim21:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:

caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec2:

caller /∈ dom (act-info (th-flag σ)) =⇒
¬exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV,
stateid.th-flag := th-flag σ
(|act-info := (act-info (th-flag σ))
(caller 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV),
partner 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV # outs)))=⇒ Q
and
not-in-err-exec31:

EUROMILS D31.4 Page 369 of 438

D31.4 – Test-Generation Methods

caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV,
th-flag := th-flag σ

(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec32:

caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV,
th-flag := th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec33:

caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒

IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q

shows Q
apply (insert valid-exec)
apply (elim abort-prep-recv-mbindFSave-E)
apply (simp add: in-err-exec)
apply (simp add: exec-actionid-Mon-prep-recv-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-prep-recv-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)

EUROMILS D31.4 Page 370 of 438

D31.4 – Test-Generation Methods

apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-actionid-Mon-prep-recv-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec32)
apply (simp add: exec-actionid-Mon-def)
done

4.22.3 Symbolic Execution rules for WAIT SEND
lemma abort-wait-send-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec

EUROMILS D31.4 Page 371 of 438

D31.4 – Test-Generation Methods

proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)
case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-send-HOL-elim21:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec21:

caller /∈ dom (act-info (th-flag σ)) =⇒
¬IPC-send-comm-check-stid caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-WAIT-SEND# outs)))=⇒ Q
and
not-in-err-exec22:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND,

EUROMILS D31.4 Page 372 of 438

D31.4 – Test-Generation Methods

th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-3-in-WAIT-SEND# outs)))=⇒Q
and
not-in-err-exec23:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-6-in-WAIT-SEND# outs)))=⇒Q
and
not-in-err-exec24:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-5-in-WAIT-SEND# outs)))=⇒Q
shows Q
apply (insert valid-exec)

apply (elim abort-wait-send-mbindFSave-E)
apply (simp only: in-err-exec)
apply (simp only: exec-actionid-Mon-wait-send-obvious3)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-def WAIT-SENDid-def split: split-if-asm option.split-asm)
apply (simp only: exec-actionid-Mon-wait-send-obvious4)
apply (auto)
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (elim not-in-err-exec23)

apply simp-all
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)

EUROMILS D31.4 Page 373 of 438

D31.4 – Test-Generation Methods

apply (simp)
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

4.22.4 Symbolic Execution rules for WAIT RECV
lemma abort-wait-recv-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis

EUROMILS D31.4 Page 374 of 438

D31.4 – Test-Generation Methods

using valid-exec
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-recv-HOL-elim21:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec21:

caller /∈ dom (act-info (th-flag σ)) =⇒
¬IPC-recv-comm-check-stid caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-WAIT-RECV# outs)))=⇒ Q
and
not-in-err-exec22:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV,

EUROMILS D31.4 Page 375 of 438

D31.4 – Test-Generation Methods

th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-3-in-WAIT-RECV# outs)))=⇒Q
and
not-in-err-exec23:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-6-in-WAIT-RECV# outs)))=⇒Q
and
not-in-err-exec24:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-5-in-WAIT-RECV# outs)))=⇒Q
shows Q
apply (insert valid-exec)
apply (elim abort-wait-recv-mbindFSave-E)
apply (simp only: in-err-exec)
apply (simp only: exec-actionid-Mon-wait-recv-obvious3)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-def WAIT-RECVid-def split: split-if-asm option.split-asm)
apply (simp only: exec-actionid-Mon-wait-recv-obvious4)
apply (auto)
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (elim not-in-err-exec23)
apply simp-all
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps)

EUROMILS D31.4 Page 376 of 438

D31.4 – Test-Generation Methods

apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

4.22.5 Symbolic Execution rules for BUF SEND
lemma abort-buf-send-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-bufs caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)

EUROMILS D31.4 Page 377 of 438

D31.4 – Test-Generation Methods

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-buf-send-HOL-elim21:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-buf-check-stid caller partner σ =⇒
(σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬ IPC-buf-check-stid caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))=⇒ Q
shows Q
using assms
apply (rule abort-buf-send-mbindFSave-E)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-buf-send-obvious3)+

EUROMILS D31.4 Page 378 of 438

D31.4 – Test-Generation Methods

apply (simp add: not-in-err-exec2)
apply (simp-all add: exec-actionid-Mon-def)
done

4.22.6 Symbolic Execution rules for BUF RECV
lemma abort-buf-recv-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-bufr caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, elim not-in-err-state-None)

qed

EUROMILS D31.4 Page 379 of 438

D31.4 – Test-Generation Methods

qed

lemma abort-buf-recv-HOL-elim21:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-buf-check-stid caller partner σ =⇒
(σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬ IPC-buf-check-stid caller partner σ =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-RECV# outs)))=⇒ Q
shows Q
using assms
apply (rule abort-buf-recv-mbindFSave-E)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-buf-recv-obvious3)+
apply (simp add: not-in-err-exec2)
apply (simp-all add: exec-actionid-Mon-def)
done

4.22.7 Symbolic Execution rules for MAP SEND
lemma abort-map-send-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

EUROMILS D31.4 Page 380 of 438

D31.4 – Test-Generation Methods

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-maps caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-send-obvious10,

case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1, simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-send-HOL-elim2:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(σ(|current-thread := caller,

EUROMILS D31.4 Page 381 of 438

D31.4 – Test-Generation Methods

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q
shows Q
using assms
apply (rule abort-map-send-mbindFSave-E)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-map-send-obvious3)+
apply (simp add: exec-actionid-Mon-def)
done

4.22.8 Symbolic Execution rules for MAP RECV
lemma abort-map-recv-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
((set-error-mem-mapr caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-recv-obvious10, elim in-err-state, simp)

next
case False

EUROMILS D31.4 Page 382 of 438

D31.4 – Test-Generation Methods

then show ?thesis
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-recv-obvious10,

case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1, simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-recv-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-recv-HOL-elim2:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

shows Q
using assms
apply (rule abort-map-recv-mbindFSave-E)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-map-recv-obvious3)+
apply (simp add: exec-actionid-Mon-def)
done

4.22.9 Symbolic Execution rules for DONE SEND
lemma abort-done-send-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some:
(caller /∈ dom (act-info (th-flag σ))) =⇒

EUROMILS D31.4 Page 383 of 438

D31.4 – Test-Generation Methods

ioprog (IPC DONE (SEND caller partner msg)) σ 6= None =⇒
(σ |= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-done-send-obvious11 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC DONE (SEND caller partner msg)) σ 6= None)

case True
then show ?thesis
using assms
by (subst (asm) abort-done-send-obvious11, simp only: False comp-apply)

next
case False
then show ?thesis
using assms not-in-err-state-None
by (metis (mono-tags) comp-apply in-err-state False abort-done-send-obvious11)

qed
qed

lemma abort-done-send-HOL-elim1:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(((remove-caller-error caller σ) |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q)

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

shows Q
using assms
by (rule abort-done-send-mbindFSave-E, simp-all add: exec-actionid-Mon-def)

4.22.10 Symbolic Execution rules for DONE SEND
lemma abort-done-recv-mbindFSave-E:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ 6= None =⇒
(σ |= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

EUROMILS D31.4 Page 384 of 438

D31.4 – Test-Generation Methods

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-done-recv-obvious11 , elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC DONE (RECV caller partner msg)) σ 6= None)

case True
then show ?thesis
using assms
by (subst (asm) abort-done-recv-obvious11, simp only: False)

next
case False
then show ?thesis
using assms not-in-err-state-None
by (metis (mono-tags) in-err-state False abort-done-recv-obvious11)

qed
qed

lemma abort-done-recv-HOL-elim1:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(((remove-caller-error caller σ) |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q)

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

shows Q
using assms
by (rule abort-done-recv-mbindFSave-E, simp-all add: exec-actionid-Mon-def)

4.23 Rules with detailed Constraints

4.23.1 Symbolic Execution rules for PREP SEND

HOL representation

lemma abort-prep-send-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)(abortlif t ioprog));P outs))
and in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

EUROMILS D31.4 Page 385 of 438

D31.4 – Test-Generation Methods

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner=⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (SEND caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-send-obvious10, simp, elim not-in-err-state-None)

EUROMILS D31.4 Page 386 of 438

D31.4 – Test-Generation Methods

qed
qed

lemma abort-prep-send-HOL-elim21 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC PREP (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-sender-addr-in-PREP-SEND msg))) caller =
Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-sender-addr-in-PREP-SEND msg))) partner =
Some (ERROR-MEM not-valid-sender-addr-in-PREP-SEND) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-sender-addr-in-PREP-SEND msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-sender-addr-in-PREP-SEND msg))) partner =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-sender-addr-in-PREP-SEND,
th-flag := th-flag σ
(|act-info := (act-info (th-flag σ))
(caller 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND),
partner 7→ (ERROR-MEM not-valid-sender-addr-in-PREP-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-MEM not-valid-sender-addr-in-PREP-SEND # outs)))=⇒ Q
and
not-in-err-exec31:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-SEND msg))) caller =
Some (ERROR-IPC error-IPC-22-in-PREP-SEND) =⇒

EUROMILS D31.4 Page 387 of 438

D31.4 – Test-Generation Methods

(act-info (th-flag (set-error-ipc-maps caller partner σ σ
error-IPC-22-in-PREP-SEND msg))) partner =

Some (ERROR-IPC error-IPC-22-in-PREP-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-SEND msg))) partner =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-SEND,
th-flag := th-flag σ

(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-SEND))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-22-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec32:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-SEND msg))) caller =
Some (ERROR-IPC error-IPC-23-in-PREP-SEND) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-SEND msg))) partner =
Some (ERROR-IPC error-IPC-23-in-PREP-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-SEND msg))) partner =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-SEND,
th-flag := th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-SEND))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-SEND# outs)))=⇒Q

and
not-in-err-exec33:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒
IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q

shows Q

EUROMILS D31.4 Page 388 of 438

D31.4 – Test-Generation Methods

apply (insert valid-exec)
apply (elim abort-prep-send-mbindFSave-E ′)
apply (simp add: in-err-exec)
apply (simp only: exec-actionid-Mon-prep-send-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (rule not-in-err-exec1)
apply (simp-all add: threa-table-obvious ′)
apply (simp add: exec-actionid-Mon-prep-send-obvious4)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-actionid-Mon-prep-send-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec32)
apply (simp add: exec-actionid-Mon-def)
done

4.23.2 Symbolic Execution rules for PREP RECV
lemma abort-prep-recv-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag σ = th-flag (error-tab-transfer caller σ σ ′)=⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =

EUROMILS D31.4 Page 389 of 438

D31.4 – Test-Generation Methods

Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC PREP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-prep-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC PREP (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-prep-recv-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-prep-recv-HOL-elim21 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC PREP (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒

EUROMILS D31.4 Page 390 of 438

D31.4 – Test-Generation Methods

exec-actionid-Mon-prep-fact1 caller partner σ =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬ exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg))) caller =
Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg))) partner =
Some (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ

not-valid-receiver-addr-in-PREP-RECV msg))) partner =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-MEM not-valid-receiver-addr-in-PREP-RECV,
th-flag := th-flag σ
(|act-info := (act-info (th-flag σ))
(caller 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV),
partner 7→ (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-MEM not-valid-receiver-addr-in-PREP-RECV # outs)))=⇒ Q
and
not-in-err-exec31:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner)=⇒
IPC-params-c2 ((the o thread-list σ) partner)=⇒
¬ IPC-params-c6 caller ((the o thread-list σ) partner) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) caller =
Some (ERROR-IPC error-IPC-22-in-PREP-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) partner =
Some (ERROR-IPC error-IPC-22-in-PREP-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-22-in-PREP-RECV msg))) partner =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-22-in-PREP-RECV,
th-flag := th-flag σ

(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-22-in-PREP-RECV))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));

EUROMILS D31.4 Page 391 of 438

D31.4 – Test-Generation Methods

P (ERROR-IPC error-IPC-22-in-PREP-RECV# outs)))=⇒Q
and
not-in-err-exec32:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
¬IPC-params-c2 ((the o thread-list σ) partner) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-RECV msg))) caller =
Some (ERROR-IPC error-IPC-23-in-PREP-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-RECV msg))) partner =
Some (ERROR-IPC error-IPC-23-in-PREP-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-23-in-PREP-RECV msg))) partner =⇒
(σ(|current-thread := caller,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-23-in-PREP-RECV,
th-flag := th-flag σ

(|act-info := act-info (stateid.th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV),
partner 7→ (ERROR-IPC error-IPC-23-in-PREP-RECV))|)|) |=

(outs← (mbind S(abortlif t exec-actionid-Mon));
P (ERROR-IPC error-IPC-23-in-PREP-RECV# outs)))=⇒Q

and
not-in-err-exec33:
caller /∈ dom (act-info (th-flag σ)) =⇒
exec-actionid-Mon-prep-fact0 caller partner σ msg =⇒
¬IPC-params-c1 ((the o thread-list σ) partner) =⇒
IPC-params-c2 ((the o thread-list σ) partner) =⇒
IPC-params-c6 caller ((the o thread-list σ) partner)=⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller
=⇒
th-flag σ = th-flag (error-tab-transfer caller σ σ ′) =⇒

(σ(|current-thread := caller,
thread-list := update-th-ready caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs)))=⇒Q

shows Q
apply (insert valid-exec)
apply (elim abort-prep-recv-mbindFSave-E ′)
apply (simp add: in-err-exec)
apply (simp only: exec-actionid-Mon-prep-recv-obvious3)
apply auto
apply (erule contrapos-np)
apply simp
apply (subst (asm) threa-table-obvious ′)
apply (rule not-in-err-exec1)
apply (simp-all add: threa-table-obvious ′)
apply (simp add: exec-actionid-Mon-prep-recv-obvious4)
apply auto
apply (erule contrapos-np)
apply simp

EUROMILS D31.4 Page 392 of 438

D31.4 – Test-Generation Methods

apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec2 exec-actionid-Mon-prep-fact0-def)
apply (simp add: exec-actionid-Mon-prep-recv-obvious5)
apply auto
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec31)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec32)
apply (simp add: exec-actionid-Mon-def)
done

4.23.3 Symbolic Execution rules for WAIT SEND
lemma abort-wait-send-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =

EUROMILS D31.4 Page 393 of 438

D31.4 – Test-Generation Methods

(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (SEND caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-send-HOL-elim21 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC WAIT (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ=⇒
(σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec21:
caller /∈ dom (act-info (th-flag σ)) =⇒

EUROMILS D31.4 Page 394 of 438

D31.4 – Test-Generation Methods

¬IPC-send-comm-check-stid caller partner σ =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-1-in-WAIT-SEND) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) partner =
Some (ERROR-IPC error-IPC-1-in-WAIT-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-SEND msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-WAIT-SEND# outs)))=⇒ Q
and
not-in-err-exec22:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-3-in-WAIT-SEND) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-SEND msg))) partner =
Some (ERROR-IPC error-IPC-3-in-WAIT-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-SEND msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-3-in-WAIT-SEND# outs)))=⇒Q
and
not-in-err-exec23:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-6-in-WAIT-SEND) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-SEND msg))) partner =
Some (ERROR-IPC error-IPC-6-in-WAIT-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

EUROMILS D31.4 Page 395 of 438

D31.4 – Test-Generation Methods

error-IPC-6-in-WAIT-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-SEND msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-6-in-WAIT-SEND# outs)))=⇒Q
and
not-in-err-exec24:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-send-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) caller =
Some (ERROR-IPC error-IPC-5-in-WAIT-SEND) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) partner =
Some (ERROR-IPC error-IPC-5-in-WAIT-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-SEND msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-5-in-WAIT-SEND# outs)))=⇒Q
shows Q
apply (insert valid-exec)

apply (elim abort-wait-send-mbindFSave-E ′)
apply (simp only: in-err-exec)
apply (simp only: exec-actionid-Mon-wait-send-obvious3)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-def WAIT-SENDid-def split: split-if-asm option.split-asm)
apply (auto)
apply (simp only: exec-actionid-Mon-wait-send-obvious4)
apply auto
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (simp-all add: not-in-err-exec23)
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps)

EUROMILS D31.4 Page 396 of 438

D31.4 – Test-Generation Methods

apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec22)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-send-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

4.23.4 Symbolic Execution rules for WAIT RECV
lemma abort-wait-recv-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =⇒
((set-error-mem-waitr caller partner σ σ ′ error-mem msg) |=
(outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q

and not-in-err-state-Some3:∧
σ ′ error-IPC.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-waitr caller partner σ σ ′ error-IPC msg) |=

EUROMILS D31.4 Page 397 of 438

D31.4 – Test-Generation Methods

(outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC WAIT (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-wait-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC WAIT (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-wait-recv-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-wait-recv-HOL-elim21 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC WAIT (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
IPC-params-c5 partner σ =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

thread-list := update-th-waiting caller (thread-list σ),
error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒ Q

and
not-in-err-exec21:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬IPC-recv-comm-check-stid caller partner σ =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

EUROMILS D31.4 Page 398 of 438

D31.4 – Test-Generation Methods

error-IPC-1-in-WAIT-RECV msg))) caller =
Some (ERROR-IPC error-IPC-1-in-WAIT-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-RECV msg))) partner =
Some (ERROR-IPC error-IPC-1-in-WAIT-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-WAIT-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-WAIT-RECV# outs)))=⇒ Q
and
not-in-err-exec22:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
¬IPC-params-c4 caller partner =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-RECV msg))) caller =
Some (ERROR-IPC error-IPC-3-in-WAIT-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-RECV msg))) partner =
Some (ERROR-IPC error-IPC-3-in-WAIT-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-3-in-WAIT-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-3-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-3-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-3-in-WAIT-RECV# outs)))=⇒Q
and
not-in-err-exec23:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
(thread-list σ) caller = None =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-RECV msg))) caller =
Some (ERROR-IPC error-IPC-6-in-WAIT-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-RECV msg))) partner =
Some (ERROR-IPC error-IPC-6-in-WAIT-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-6-in-WAIT-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

EUROMILS D31.4 Page 399 of 438

D31.4 – Test-Generation Methods

error-IPC-6-in-WAIT-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-6-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-6-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-6-in-WAIT-RECV# outs)))=⇒Q
and
not-in-err-exec24:

caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-recv-comm-check-stid caller partner σ =⇒
IPC-params-c4 caller partner =⇒
¬IPC-params-c5 partner σ =⇒
∃ th. (thread-list σ) caller = Some th =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-RECV msg))) caller =
Some (ERROR-IPC error-IPC-5-in-WAIT-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-RECV msg))) partner =
Some (ERROR-IPC error-IPC-5-in-WAIT-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-5-in-WAIT-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-5-in-WAIT-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV),
partner 7→ (ERROR-IPC error-IPC-5-in-WAIT-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-5-in-WAIT-RECV# outs)))=⇒Q
shows Q
apply (insert valid-exec)
apply (elim abort-wait-recv-mbindFSave-E ′)
apply (simp only: in-err-exec)
apply (simp only: exec-actionid-Mon-wait-recv-obvious3)
apply (simp add: not-in-err-exec1)
apply (simp add: exec-actionid-Mon-def WAIT-RECVid-def split: split-if-asm option.split-asm)
apply auto
apply (simp only: exec-actionid-Mon-wait-recv-obvious4)
apply (auto)
apply (erule contrapos-np)
apply (simp)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: domIff)
apply (simp-all add: not-in-err-exec23)
apply (simp add: not-in-err-exec24) +
apply (erule contrapos-np)
apply (simp)
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec22)

EUROMILS D31.4 Page 400 of 438

D31.4 – Test-Generation Methods

apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (erule contrapos-np)
apply simp
apply (fold update-th-current.simps)
apply (subst (asm) threa-table-obvious ′)
apply (simp add: not-in-err-exec21)
apply (erule contrapos-np)
apply simp
apply (simp add: update-state-wait-recv-params5-def split:option.split-asm split-if-asm)
apply (simp add: exec-actionid-Mon-def)
done

4.23.5 Symbolic Execution rules for BUF SEND
lemma abort-buf-send-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =⇒
((set-error-mem-bufs caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner=⇒
((set-error-ipc-bufs caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

EUROMILS D31.4 Page 401 of 438

D31.4 – Test-Generation Methods

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (SEND caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-buf-send-HOL-elim21 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC BUF (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-buf-check-stid caller partner σ =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒

Rep-memory
(resource(σ(|current-thread := caller,

resource := update-list (resource σ)

EUROMILS D31.4 Page 402 of 438

D31.4 – Test-Generation Methods

(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))) =

Rep-memory (update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))
(map ((the o (fst o Rep-memory) (resource σ))) msg))) =⇒ Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬ IPC-buf-check-stid caller partner σ =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) caller =
Some (ERROR-IPC error-IPC-1-in-BUF-SEND) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) partner =
Some (ERROR-IPC error-IPC-1-in-BUF-SEND)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-SEND msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-SEND,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-SEND))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-SEND# outs)))=⇒ Q
shows Q
using assms
apply (rule abort-buf-send-mbindFSave-E ′)
apply simp
apply simp
apply simp+
apply (simp add: exec-actionid-Mon-buf-send-obvious3)+
apply (simp add: not-in-err-exec2)
apply (simp-all add: exec-actionid-Mon-def)
done

4.23.6 Symbolic Execution rules for BUF RECV
lemma abort-buf-recv-mbindFSave-E ′:
assumes valid-exec:

(σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)(abortlif t ioprog));P outs))
and in-err-state:

caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒

EUROMILS D31.4 Page 403 of 438

D31.4 – Test-Generation Methods

ioprog (IPC BUF (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =⇒
((set-error-mem-bufr caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-bufr caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC BUF (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec
by (subst (asm) abort-buf-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
using valid-exec
proof (cases ioprog (IPC BUF (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, case-tac a, simp,

simp split: errors.split-asm, elim not-in-err-state-Some1,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-buf-recv-obvious10, simp, elim not-in-err-state-None)

qed

EUROMILS D31.4 Page 404 of 438

D31.4 – Test-Generation Methods

qed

lemma abort-buf-recv-HOL-elim21 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC BUF (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
IPC-buf-check-stid caller partner σ =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒

Rep-memory
(resource(σ(|current-thread := caller,

resource := update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg)),

thread-list := update-th-ready caller
(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))) =

Rep-memory (update-list (resource σ)
(zip ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller))
(map ((the o (fst o Rep-memory) (resource σ))) msg))) =⇒Q

and
not-in-err-exec2:
caller /∈ dom (act-info (th-flag σ)) =⇒
¬ IPC-buf-check-stid caller partner σ =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-RECV msg))) caller =
Some (ERROR-IPC error-IPC-1-in-BUF-RECV) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-RECV msg))) partner =
Some (ERROR-IPC error-IPC-1-in-BUF-RECV)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

error-IPC-1-in-BUF-RECV msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ

EUROMILS D31.4 Page 405 of 438

D31.4 – Test-Generation Methods

error-IPC-1-in-BUF-RECV msg))) partner =⇒
(σ(|current-thread := caller ,

thread-list := update-th-current caller (thread-list σ),
error-codes := ERROR-IPC error-IPC-1-in-BUF-RECV,
th-flag := th-flag σ
(|act-info := act-info (th-flag σ)
(caller 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV),
partner 7→ (ERROR-IPC error-IPC-1-in-BUF-RECV))|)|) |=
(outs← (mbind S(abortlif t exec-actionid-Mon));

P (ERROR-IPC error-IPC-1-in-BUF-RECV# outs)))=⇒ Q
shows Q
using assms
apply (rule abort-buf-recv-mbindFSave-E ′)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-buf-recv-obvious3)+
apply (simp add: not-in-err-exec2)
apply (simp-all add: exec-actionid-Mon-def)
done

4.23.7 Symbolic Execution rules for MAP SEND
lemma abort-map-send-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner=⇒
((set-error-mem-maps caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒

EUROMILS D31.4 Page 406 of 438

D31.4 – Test-Generation Methods

(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-maps caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-send-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (SEND caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-send-obvious10,

case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1, simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-send-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-send-HOL-elim2 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC MAP (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|) |=

EUROMILS D31.4 Page 407 of 438

D31.4 – Test-Generation Methods

(outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒
Rep-memory
(resource(σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) partner))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))) =

Rep-memory (init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) partner))))=⇒ Q

shows Q
using assms
apply (rule abort-map-send-mbindFSave-E ′)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-map-send-obvious3)+
apply (simp-all add: exec-actionid-Mon-def)
done

4.23.8 Symbolic Execution rules for MAP RECV
lemma abort-map-recv-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state:
caller ∈ dom (act-info (th-flag σ)) =⇒
(σ |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some1:∧
σ ′.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(NO-ERRORS, σ ′) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ ′))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ ′) = th-flag σ =⇒
((error-tab-transfer caller σ σ ′) |=
(outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-Some2:∧
σ ′ error-mem.

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-MEM error-mem, σ ′) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =
Some (ERROR-MEM error-mem) =⇒
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) caller =
(act-info (th-flag (set-error-mem-maps caller partner σ σ ′ error-mem msg))) partner =⇒
((set-error-mem-mapr caller partner σ σ ′ error-mem msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-MEM error-mem # outs))) =⇒Q
and not-in-err-state-Some3:∧

σ ′ error-IPC.
(caller /∈ dom (act-info (th-flag σ))) =⇒

EUROMILS D31.4 Page 408 of 438

D31.4 – Test-Generation Methods

ioprog (IPC MAP (RECV caller partner msg)) σ = Some(ERROR-IPC error-IPC, σ ′) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
Some (ERROR-IPC error-IPC) =⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =
Some (ERROR-IPC error-IPC)=⇒
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) caller =
(act-info (th-flag (set-error-ipc-maps caller partner σ σ ′ error-IPC msg))) partner =⇒
((set-error-ipc-mapr caller partner σ σ ′ error-IPC msg)

|= (outs← (mbind S(abortlif t ioprog)); P (ERROR-IPC error-IPC# outs))) =⇒Q
and not-in-err-state-None:

(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC MAP (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))
case True
then show ?thesis
using valid-exec
by (subst (asm) abort-map-recv-obvious10, elim in-err-state, simp)

next
case False
then show ?thesis
proof (cases ioprog (IPC MAP (RECV caller partner msg)) σ)

case (Some a)
then show ?thesis
using valid-exec False Some
by (subst (asm) abort-map-recv-obvious10,

case-tac a,simp split: errors.split-asm, simp, elim not-in-err-state-Some1, simp,
auto intro: not-in-err-state-Some2 not-in-err-state-Some3)

next
case None
then show ?thesis
using valid-exec False
by (subst (asm) abort-map-recv-obvious10, simp, elim not-in-err-state-None)

qed
qed

lemma abort-map-recv-HOL-elim2 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC MAP (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-exec:
caller ∈ dom (act-info (th-flag σ)) =⇒

(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));
P (get-caller-error caller σ # outs))) =⇒ Q

and
not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(act-info (th-flag σ)) caller = None =⇒
(act-info (th-flag (error-tab-transfer caller σ σ))) caller =
(act-info (th-flag σ)) caller =⇒
th-flag (error-tab-transfer caller σ σ) = th-flag σ =⇒
(σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

EUROMILS D31.4 Page 409 of 438

D31.4 – Test-Generation Methods

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|)
|= (outs← (mbind S(abortlif t exec-actionid-Mon)); P (NO-ERRORS # outs))) =⇒

Rep-memory
(resource(σ(|current-thread := caller,

resource := init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)

((own-vmem-adr o the o thread-list σ) caller))),
thread-list := update-th-ready caller

(update-th-ready partner
(thread-list σ)),

error-codes := NO-ERRORS,
th-flag := th-flag σ|))) =

Rep-memory (init-share-list (resource σ)
(zip msg ((sorted-list-of-set.F o dom o fst o Rep-memory)
((own-vmem-adr o the o thread-list σ) caller)))) =⇒ Q

shows Q
using assms
apply (rule abort-map-recv-mbindFSave-E ′)
apply simp
apply simp
apply simp
apply (simp add: exec-actionid-Mon-map-recv-obvious3)+
apply (simp add: exec-actionid-Mon-def)
done

4.23.9 Symbolic Execution rules for DONE SEND
lemma abort-done-send-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state1:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller 6= partner =⇒
((act-info (th-flag σ)) partner =
((act-info (th-flag (remove-caller-error caller σ)))) partner) =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and in-err-state2:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller = partner =⇒
((act-info (th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ 6= None =⇒
(σ |= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (SEND caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec

apply (subst (asm) abort-done-send-obvious12, simp)

EUROMILS D31.4 Page 410 of 438

D31.4 – Test-Generation Methods

apply (erule disjE)
apply (erule conjE)+
apply (simp add: in-err-state1)
apply (erule conjE)+
apply (simp add: in-err-state2)
done

next
case False
assume hyp1: caller /∈ dom (act-info (th-flag σ))
then show ?thesis
proof (cases ioprog (IPC DONE (SEND caller partner msg)) σ 6= None)

case True
then show ?thesis
using assms
by (subst (asm) abort-done-send-obvious11, simp only: False comp-apply)

next
case False
then show ?thesis
using valid-exec False hyp1
apply (subst (asm) abort-done-send-obvious11)
apply (simp only: if-False comp-apply split: bool.split-asm)
apply (elim not-in-err-state-None)
apply (erule contrapos-np)
apply (simp-all)
done

qed
qed

lemma abort-done-send-HOL-elim1 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC DONE (SEND caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-state1:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller 6= partner =⇒
((act-info (th-flag (remove-caller-error caller σ)))) partner =
(act-info (th-flag σ)) partner =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))

=⇒ Q

and in-err-state2:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller = partner =⇒
((act-info (th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

shows Q
using valid-exec
by (rule abort-done-send-mbindFSave-E ′,

simp-all add: exec-actionid-Mon-def in-err-state1 in-err-state2 not-in-err-exec1)

EUROMILS D31.4 Page 411 of 438

D31.4 – Test-Generation Methods

4.23.10 Symbolic Execution rules for DONE SEND
lemma abort-done-recv-mbindFSave-E ′:

assumes valid-exec:
(σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)(abortlif t ioprog));P outs))

and in-err-state1:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller 6= partner =⇒
((act-info (th-flag σ)) partner =
((act-info (th-flag (remove-caller-error caller σ)))) partner) =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs)))
=⇒ Q

and in-err-state2:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller = partner =⇒
((act-info (th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t ioprog)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-state-Some:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ 6= None =⇒
(σ |= (outs← (mbind S (abortlif t ioprog)); P (NO-ERRORS # outs))) =⇒Q

and not-in-err-state-None:
(caller /∈ dom (act-info (th-flag σ))) =⇒
ioprog (IPC DONE (RECV caller partner msg)) σ = None =⇒
(σ |= (P [])) =⇒ Q

shows Q
proof (cases caller ∈ dom (act-info (th-flag σ)))

case True
then show ?thesis
using valid-exec

apply (subst (asm) abort-done-recv-obvious12, simp)
apply (erule disjE)
apply (erule conjE)+
apply (simp add: in-err-state1)
apply (erule conjE)+
apply (simp add: in-err-state2)
done

next
case False
assume hyp1: caller /∈ dom (act-info (th-flag σ))
then show ?thesis
proof (cases ioprog (IPC DONE (RECV caller partner msg)) σ 6= None)

case True
then show ?thesis
using assms
by (subst (asm) abort-done-recv-obvious11, simp only: False)

next
case False
then show ?thesis
using valid-exec False hyp1

apply (subst (asm) abort-done-recv-obvious11)
apply (simp only: if-False split: bool.split-asm)
apply (elim not-in-err-state-None)
apply (erule contrapos-np)

EUROMILS D31.4 Page 412 of 438

D31.4 – Test-Generation Methods

apply (simp-all)
done

qed
qed

lemma abort-done-recv-HOL-elim1 ′:
assumes

valid-exec: (σ |= (outs← (mbind ((IPC DONE (RECV caller partner msg))#S)
(abortlif t exec-actionid-Mon)); P outs))

and in-err-state1:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller 6= partner =⇒
((act-info (th-flag (remove-caller-error caller σ)))) partner =
(act-info (th-flag σ)) partner =⇒

((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs)))

=⇒ Q

and in-err-state2:
caller ∈ dom (act-info (th-flag σ)) =⇒ caller = partner =⇒
((act-info (th-flag (remove-caller-error caller σ)))) partner = None =⇒
((remove-caller-error caller σ) |=
(outs← (mbind S (abortlif t exec-actionid-Mon)); P (get-caller-error caller σ # outs))) =⇒ Q

and not-in-err-exec1:
caller /∈ dom (act-info (th-flag σ)) =⇒
(σ |= (outs← (mbind S(abortlif t exec-actionid-Mon));P (NO-ERRORS # outs))) =⇒ Q

shows Q
using valid-exec
by (rule abort-done-recv-mbindFSave-E ′,

simp-all add: exec-actionid-Mon-def in-err-state1 in-err-state2 not-in-err-exec1)

end

theory IPC-system-calls

imports IPC-symbolic-exec-intros IPC-symbolic-exec-elims

begin

4.24 HOL representation of PikeOS IPC system calls

We define a system call by a set of operations. PikeOS IPC API contain 7 system calls, each system call
can do a set of operations. In this section we will just present the most general one called p4_ipc:

type-synonym behaviouripc = traceipc set
type-synonym behaviouripc ′= traceipc list

4.24.1 System calls with thread ID as argument
type-synonym behaviourid= traceipc list

definition P4-IPC-BUFid

::threadid ⇒ threadid ⇒ nat list⇒ behaviourid
where

EUROMILS D31.4 Page 413 of 438

D31.4 – Test-Generation Methods

P4-IPC-BUFid caller partner msg ≡
[caller Bid msg Bid partner, caller Cid msg Cid partner,
caller Did msg Did partner, caller Eid msg Eid partner]

definition P4-IPC-BUF-SENDid

::threadid ⇒ threadid ⇒ nat list⇒ behaviourid
where
P4-IPC-BUF-SENDid caller partner msg ≡ [caller Bid msg Bid partner, caller Did msg Did partner]

definition P4-IPC-BUF-RECVid

::threadid ⇒ threadid ⇒ nat list⇒ behaviourid
where
P4-IPC-BUF-RECVid caller partner msg ≡ [caller Cid msg Cid partner, caller Eid msg Eid partner]

definition P4-IPC-SENDid

::threadid ⇒ threadid ⇒ nat list⇒ behaviourid
where
P4-IPC-SENDid caller partner msg ≡ [caller Bid msg Bid partner, caller Did msg Did partner]

definition P4-IPC-RECVid

::threadid ⇒ threadid ⇒ nat list⇒ behaviourid
where
P4-IPC-RECVid caller partner msg ≡ [caller Cid msg Cid partner, caller Eid msg Eid partner]

definition P4-IPCid

::threadid ⇒ threadid ⇒ nat list⇒ behaviourid
where
P4-IPCid caller partner msg ≡

[caller Bid msg Bid partner, caller Cid msg Cid partner,
caller Did msg Did partner, caller Eid msg Eid partner]

4.24.2 System calls based on datatype
datatype (′thread-id, ′msg) P4-IPC-call =

P4-IPC-call ′thread-id ′thread-id ′msg
| P4-IPC-SEND-call ′thread-id ′thread-id ′msg
| P4-IPC-RECV-call ′thread-id ′thread-id ′msg
| P4-IPC-BUF-call ′thread-id ′thread-id ′msg
| P4-IPC-BUF-SEND-call ′thread-id ′thread-id ′msg
| P4-IPC-BUF-RECV-call ′thread-id ′thread-id ′msg
| P4-IPC-MAP-call ′thread-id ′thread-id ′msg
| P4-IPC-MAP-SEND-call ′thread-id ′thread-id ′msg
| P4-IPC-MAP-RECV-call ′thread-id ′thread-id ′msg

value int(card(interleave ([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])

EUROMILS D31.4 Page 414 of 438

D31.4 – Test-Generation Methods

([IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])))

fun IPC-call-sem::(′thread-id, ′msg) P4-IPC-call ⇒
((p4-stageipc, (′thread-id , ′msg) p4-directipc)actionipc list)

where
IPC-call-sem (P4-IPC-call caller partner msg) =

([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-SEND-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])

|
IPC-call-sem (P4-IPC-RECV-call caller partner msg) =

([IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-BUF-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC DONE (SEND caller partner msg),
IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-BUF-SEND-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC BUF (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])

|
IPC-call-sem (P4-IPC-BUF-RECV-call caller partner msg) =

([IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC BUF (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-MAP-call caller partner msg) =
([IPC PREP (SEND caller partner msg),

IPC WAIT (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg),

EUROMILS D31.4 Page 415 of 438

D31.4 – Test-Generation Methods

IPC PREP (RECV caller partner msg),
IPC WAIT (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])|

IPC-call-sem (P4-IPC-MAP-SEND-call caller partner msg) =
([IPC PREP (SEND caller partner msg),
IPC WAIT (SEND caller partner msg),
IPC MAP (SEND caller partner msg),
IPC DONE (SEND caller partner msg)])|

IPC-call-sem (P4-IPC-MAP-RECV-call caller partner msg) =
([IPC PREP (RECV caller partner msg),

IPC WAIT (RECV caller partner msg),
IPC MAP (RECV caller partner msg),
IPC DONE (RECV caller partner msg)])

4.24.3 Predicates on system calls
definition is-ipc-system-callid
where is-ipc-system-callid sc = (∃ caller partner msg. sc = P4-IPCid caller partner msg)

lemmas system-calls-normalizer =
is-ipc-system-callid-def P4-IPCid-def

end

theory IPC-coverage

imports IPC-system-calls

begin

fun sync-communication
:: ′a list⇒ ′a list⇒ ′a list⇒ ′a list set ((- /b-c/ -) [201, 0, 201] 200)

where
[] b[]c [] = {[]}|
A b[]c B = interleave A B|
[] bNc [] = {[]}|
A b[n1, n2]c [] = (if n1 ∈ set A ∨ n2 ∈ set A then {} else {A})|
[] b[n1,n2]c (B) = (if n1 ∈ set B ∨ n2 ∈ set B then {} else {B})|
(a#A) b[n1,n2]c (b#B) = (if (a = n1 ∧ b = n2)

then image (λ x. n1 #n2# x) (A b[n1,n2]c B)
else

if a 6= n1 ∧ b = n2
then image (λ x. a # x) (A b[n1,n2]c (b#B))
else

if a = n1 ∧ b 6= n2
then image (λ x. b # x) ((a#A) b[n1,n2]c B)
else (image(λ x. a # x) (A b[n1,n2]c (b#B)) ∪

(image (λ x. b # x) ((a#A) b[n1,n2]c B))))|
A bNc B = A b[]c B

datatype (′th-id, ′sclist)criterion =
interleave-all (′th-id × ′sclist) list
|TPAIR ′th-id ′th-id ′th-id ⇀ ′sclist
|COMM ′th-id ′th-id ′th-id ⇀ ′sclist

EUROMILS D31.4 Page 416 of 438

D31.4 – Test-Generation Methods

4.24.4 Derivation of communication from system calls
— Definition that let us to derive PikeOS ipc communication from the different system calls

definition
[simp]:
sc-cases-IPC-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((th B msg B th ′)
b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′) ∪
(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′D msg D th)))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′D msg D th)))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

EUROMILS D31.4 Page 417 of 438

D31.4 – Test-Generation Methods

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)

EUROMILS D31.4 Page 418 of 438

D31.4 – Test-Generation Methods

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)])))

definition
[simp]:

sc-cases-IPC-SEND-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((th B msg B th ′)
b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′)))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th ′ msg) , IPC WAIT (RECV th ′ th msg)]c
(th ′E msg E th) ∪
(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
(th D msg D th ′))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

EUROMILS D31.4 Page 419 of 438

D31.4 – Test-Generation Methods

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)])))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|-⇒ {})

definition
[simp]:

sc-cases-IPC-RECV-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′D msg D th)))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′B msg B th)

EUROMILS D31.4 Page 420 of 438

D31.4 – Test-Generation Methods

b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
(thE msg E th ′) ∪
(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
(th ′D msg D th)))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),

IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),

IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),

IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),

IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

EUROMILS D31.4 Page 421 of 438

D31.4 – Test-Generation Methods

|-⇒ {})

definition
[simp]:
sc-cases-IPC-BUF-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}

EUROMILS D31.4 Page 422 of 438

D31.4 – Test-Generation Methods

else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|-⇒ {})

definition
[simp]:

sc-cases-IPC-BUF-SEND-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg), IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

EUROMILS D31.4 Page 423 of 438

D31.4 – Test-Generation Methods

IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg), IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-BUF-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC BUF (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC BUF (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|-⇒ {})

definition
[simp]:

sc-cases-IPC-BUF-RECV-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c

EUROMILS D31.4 Page 424 of 438

D31.4 – Test-Generation Methods

([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-BUF-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),

IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-BUF-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC BUF (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC BUF (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|-⇒ {})

definition
[simp]:
sc-cases-IPC-MAP-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)

EUROMILS D31.4 Page 425 of 438

D31.4 – Test-Generation Methods

b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),

IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

EUROMILS D31.4 Page 426 of 438

D31.4 – Test-Generation Methods

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|-⇒ {})

definition
[simp]:

sc-cases-IPC-MAP-SEND-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg), IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg), IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),

IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}

EUROMILS D31.4 Page 427 of 438

D31.4 – Test-Generation Methods

else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (((th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))))

|P4-IPC-MAP-RECV-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th B msg B th ′)
b[IPC WAIT (SEND th th msg) , IPC WAIT (RECV th ′ th msg)]c
([IPC PREP (RECV th ′ th msg), IPC WAIT (RECV th ′ th msg),
IPC MAP (RECV th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]) ∪

(th ′C msg C th)
b[IPC WAIT (RECV th ′ th msg) , IPC WAIT (SEND th th ′ msg)]c
([IPC PREP (SEND th th ′ msg), IPC WAIT (SEND th th ′ msg),
IPC MAP (SEND th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]))

|-⇒ {})

definition
[simp]:

sc-cases-IPC-MAP-RECV-call th msg th ′ sc ′ =
(case sc ′ of P4-IPC-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′) (∗check if th ′ is caller of sc ′ and

th is his partner and msg msg ′ are equal∗)
then {}
else ((

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)

EUROMILS D31.4 Page 428 of 438

D31.4 – Test-Generation Methods

then {}
else ((th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)])))

|P4-IPC-MAP-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else ((

(th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))))

|P4-IPC-MAP-SEND-call th1 ′ th2 ′ msg ′⇒
(if (th2 ′ 6= th) ∨ (th1 ′ 6= th ′) ∨ (msg 6= msg ′)
then {}
else (th ′B msg B th)
b[IPC WAIT (SEND th ′ th msg) , IPC WAIT (RECV th th ′ msg)]c
([IPC PREP (RECV th th ′ msg), IPC WAIT (RECV th th ′ msg),
IPC MAP (RECV th th ′ msg), IPC DONE (SEND th th ′ msg),
IPC DONE (RECV th th ′ msg)]) ∪

(th C msg C th ′)
b[IPC WAIT (RECV th th ′ msg) , IPC WAIT (SEND th ′ th msg)]c
([IPC PREP (SEND th ′ th msg), IPC WAIT (SEND th ′ th msg),
IPC MAP (SEND th ′ th msg), IPC DONE (SEND th ′ th msg),
IPC DONE (RECV th ′ th msg)]))

|-⇒ {})
definition
[simp]:
comm-cases th th ′ sc sc ′ =
(case sc of P4-IPC-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′) (∗check if th is caller of sc and th ′ is his partner∗)
then {}
else sc-cases-IPC-call th msg th ′ sc ′)
|P4-IPC-SEND-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-SEND-call th msg th ′ sc ′)
|P4-IPC-RECV-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-RECV-call th msg th ′ sc ′)
|P4-IPC-BUF-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-BUF-call th msg th ′ sc ′)

EUROMILS D31.4 Page 429 of 438

D31.4 – Test-Generation Methods

|P4-IPC-BUF-SEND-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-BUF-SEND-call th msg th ′ sc ′)
|P4-IPC-BUF-RECV-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-BUF-RECV-call th msg th ′ sc ′)
|P4-IPC-MAP-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-MAP-call th msg th ′ sc ′)
|P4-IPC-MAP-SEND-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-MAP-SEND-call th msg th ′ sc ′)
|P4-IPC-MAP-RECV-call th1 th2 msg⇒
(if (th2 6= th ′) ∨ (th1 6= th) ∨ (th = th ′)
then {}
else sc-cases-IPC-MAP-RECV-call th msg th ′ sc ′))

fun criteria :: (′th-id, (′th-id, ′msg) P4-IPC-call)criterion⇒
((p4-stageipc, (′th-id, ′msg) p4-directipc)actionipc list) set

where
criteria (interleave-all S) = undefined

|criteria (COMM th th ′ scTab) =
(case scTab th of None⇒ {}
| Some sc⇒
(case scTab th ′ of None⇒ {}
| Some sc ′⇒ comm-cases th th ′ sc sc ′))

|criteria (TPAIR th th ′ scTab) =
(case scTab th of None⇒
(case scTab th ′ of None⇒ {}
| Some sc⇒
{IPC-call-sem sc})
| Some sc⇒
(case scTab th ′ of None⇒ {IPC-call-sem sc}
| Some sc ′⇒ interleave (IPC-call-sem sc) (IPC-call-sem sc ′)))

4.24.5 Partial order theorem
lemma partial-order-ipc-instance-resource:
assumes 1: th 6= th ′

shows
image (λ is. mbind is (λa. (out1← BUF-RECVMON a ; MAP-RECVMON a)) σ)

(criteria (COMM th th ′ [th 7→ P4-IPC-call th th ′ msg ,
th ′ 7→ P4-IPC-call th ′ th msg])) =

image (λ is. mbind is (λa. (out1← BUF-RECVMON a ; MAP-RECVMON a)) σ)
(interleave (th C msg C th ′) (th ′D msg D th))

oops

lemma (int o card) (criteria (COMM th th ′ [th 7→ P4-IPC-call th th ′ msg ,
th ′ 7→ P4-IPC-call th ′ th msg])) <

(int o card) ((interleave (th C msg C th ′) (th ′D msg D th)))

EUROMILS D31.4 Page 430 of 438

D31.4 – Test-Generation Methods

by simp

4.24.6 ipc communications derivations

4.24.7 Lemmas on ipc communications
lemma comm-with-P4-IPC-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

fix scTab th
case None
from this
show ?thesis
using assms
by auto

next
case (Some a)
from this
show ?thesis
using assms
by auto

qed

lemma comm-with-P4-IPC-BUF-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma comm-with-P4-IPC-BUF-SEND-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-SEND-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms

EUROMILS D31.4 Page 431 of 438

D31.4 – Test-Generation Methods

by auto
next

case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma comm-with-P4-IPC-BUF-RECV-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-RECV-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma comm-with-P4-IPC-MAP-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma comm-with-P4-IPC-MAP-SEND-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-SEND-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1: scTab th = None

EUROMILS D31.4 Page 432 of 438

D31.4 – Test-Generation Methods

then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma comm-with-P4-IPC-MAP-RECV-call-Some:
assumes 1:(the o scTab) th = (P4-IPC-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-RECV-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) 6= {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

4.24.8 No communications
lemma not-comm-SEND-SEND:

assumes 1:(the o scTab) th = (P4-IPC-SEND-call th th ′ msg) ∧
(the o scTab) th ′ = (P4-IPC-SEND-call th ′ th msg)

and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma not-comm-SEND-SEND-BUF:
assumes 1:(the o scTab) th = (P4-IPC-SEND-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-SEND-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

EUROMILS D31.4 Page 433 of 438

D31.4 – Test-Generation Methods

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma not-comm-SEND-SEND-MAP:
assumes 1:(the o scTab) th = (P4-IPC-SEND-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-SEND-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma not-comm-RECV-RECV:
assumes 1:(the o scTab) th = (P4-IPC-RECV-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-RECV-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma not-comm-RECV-RECV-BUF:
assumes 1:(the o scTab) th = (P4-IPC-RECV-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-BUF-RECV-call th ′ th msg)

EUROMILS D31.4 Page 434 of 438

D31.4 – Test-Generation Methods

and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

lemma not-comm-RECV-RECV-MAP:
assumes 1:(the o scTab) th = (P4-IPC-RECV-call th th ′ msg) ∧

(the o scTab) th ′ = (P4-IPC-MAP-RECV-call th ′ th msg)
and 2: th ∈ dom scTab ∧ th ′∈ dom scTab
and 3: th 6= th ′

shows criteria (COMM th th ′ scTab) = {}
proof (cases scTab th)

case None
assume 1: scTab th = None
then show ?thesis
using assms
by auto

next
case (Some a)
assume 1: scTab th = Some a
then show ?thesis
using assms
by (auto simp: split:option.split)

qed

end

EUROMILS D31.4 Page 435 of 438

D31.4 – Test-Generation Methods

Bibliography

[ABC+13] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An orches-
trated survey of methodologies for automated software test case generation. Journal of
Systems and Software, 86(8):1978–2001, 2013.

[And86] Peter B. Andrews. An introduction to mathematical logic and type theory: to truth through
proof. Academic Press Professional, Inc., San Diego, CA, USA, 1986.

[And02] Peter B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth through
Proof. Kluwer Academic Publishers, Dordrecht, 2002.

[BBW15] Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. Formal firewall testing: An applic-
ation of test and proof techniques. Softw. Test., Verif. Reliab., 25(1):34–71, 2015.

[BFNW13] Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi, and Burkhart Wolff. Test
program generation for a microprocessor. Lecture Notes in Computer Science, 7942:76–95,
2013.

[BGM91] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Software testing based on formal
specifications: a theory and a tool. Softw. Eng. J., 6(6):387–405, 1991.

[BHNW15] Achim D. Brucker, Oto Havle, Yakoub Nemouchi, and Burkhart Wolff. Testing the ipc
protocol for a real-time operating system. In Arie Gurfinkel and Sanjit A. Seshia, editors,
Working Conference on Verified Software: Theories, Tools, and Experiments, Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, 2015.

[BN04] Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In Software En-
gineering and Formal Methods (SEFM), pages 230–239, 2004.

[BTV09] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for
string-manipulating programs. In TACAS, pages 307–321, 2009.

[BW07] Achim D. Brucker and Burkhart Wolff. Test-sequence generation with hol-testgen with an
application to firewall testing. In Tests and Proofs, pages 149–168, 2007.

[BW13] Achim D. Brucker and Burkhart Wolff. On Theorem Prover-based Testing. Formal Asp.
Comput. (FAOC), 25(5):683–721, 2013.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proceedings of the the fifth ACM SIGPLAN international conference
on Functional programming, pages 268–279, New York, NY USA, 2000. ACM Press.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
pages 56–68, June 1940.

[dag96] Handbook of tableau methods. 1996.

[DF93] Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test cases
from model-based specifications. 670:268–284, April 1993.

EUROMILS D31.4 Page 436 of 438

D31.4 – Test-Generation Methods

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS,
2008.

[FGW10] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Unifying Theories in
Isabelle/HOL, volume 6445 of 0302-9743. Springer Berlin Heidelberg, November 2010.

[FGW12] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Isabelle/Circus: A pro-
cess specification and verification environment. In VSTTE, volume LNCS 7152 of Lecture
Notes in Computer Science, pages 243–260, 2012.

[FGW15] Abderrahmane Feliachi, Marie-Claude Gaudel, and Burkhart Wolff. Symbolic test-
generation in HOL-TestGen/Cirta: A case study. Int. J. Software Informatics, 9(2):177–
203, 2015.

[FGWW13] Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel, and Burkhart Wolff. The
circus testing theory revisited in Isabelle/HOL. In Formal Methods and Software Engineer-
ing, pages 131–147, 2013.

[FTW04] Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test generation based on symbolic
specifications. In FATES, pages 1–15, 2004.

[FWG12] Abderrahmane Feliachi, Burkhart Wolff, and Marie-Claude Gaudel. Isabelle/circus.
Archive of Formal Proofs, June 2012. http://afp.sourceforge.net/entries/Circus.shtml,
Formal proof development.

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In PeterD. Mosses, Mogens Nielsen, and
MichaelI. Schwartzbach, editors, TAPSOFT ’95: Theory and Practice of Software Devel-
opment, volume 915 of Lecture Notes in Computer Science, pages 82–96. Springer Berlin
Heidelberg, 1995.

[GB91] M.-C Gaudel G.Bernot and B.Marre. Software testing based on formal specification: A
theory and a tool. Software Engeneering Journal, 6(6):387–405, November 1991.

[Gil62] Arthur Gill. Introduction to the theory of finite-state machines. McGraw-Hill, 1962.

[GW94] P. Godefroid and P. Wolper. A partial approach to model checking. In Papers Presented at
the IEEE Symposium on Logic in Computer Science, number 22, pages 305–326, Orlando,
FL, USA, 1994. Academic Press, Inc.

[haf15] Florian haftmann. Code generation from isabelle/hol theories, May 2015.

[HHL+97] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and Jean
Wolter. The performance of microkernel-based systems. In Symp. on Operating System
Principles (SOSP), 1997.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of an os kernel.
In ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, pages 207–220. ACM,
2009.

[LT89] Nancy Lynch and Mark Tuttle. An introduction to input/output automata. CWI-Quarterly,
2(3):219–246, 1989.

[MQB07] Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball. Chess: A systematic testing tool for
concurrent software. Technical Report MSR-TR-2007-149, Microsoft Research, November
2007.

EUROMILS D31.4 Page 437 of 438

http://afp.sourceforge.net/entries/Circus.shtml

D31.4 – Test-Generation Methods

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1997.

[Nip12] Tobias Nipkow. Programing and Proving in Isabelle/HOL, May 2012.

[Nip13] Tobias Nipkow. Hol/list.thy, 2013.

[NP00] Tobias Nipkow and Lawrence C Paulson. Hol/nat.thy, 2000.

[NPW14] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Theory set, 2014.

[NWP13] Tobias Nipkow, Markus Wenzel, and Larry Paulson, Dec 2013.

[Pau99] Lawrence C. Paulson. A generic tableau prover and its integration with isabelle. Journal of
Universal Computer Science, 5(3):73–87, 1999.

[Pel93] Doron Peled. All from one, one for all: on model checking using representatives. In
Computer Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece,
June 28 - July 1, 1993, Proceedings, pages 409–423, 1993.

[PP10] Leaf Petersen and Enrico Pontelli, editors. Proceedings of the POPL 2010 Workshop on
Declarative Aspects of Multicore Programming, DAMP 2010, Madrid, Spain, January 19,
2010. ACM, 2010.

[SLZ07] Weihang Jiang Shan Lu and Yuanyuan Zhou. A study of interleaving coverage criteria.
In The 6th Joint Meeting on European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: Companion Papers,
pages 533–536, September 2007.

[SYS] SYSGO. Pikeos.

[SYS13a] SYSGO. PikeOS Fundamentals. SYSGO, 2013.

[SYS13b] SYSGO. PikeOS Kernel. SYSGO, 2013.

[Urb13] Christian Urban. The isabelle cookbook, July 2013.

[Wad92] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, pages 61–78, New York, NY, USA, 1992.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
POPL, pages 60–76, 1989.

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of circus. In ZB ’02, pages 184–203,
London, UK, UK, 2002. Springer-Verlag.

[Wen97] Markus Wenzel. Type classes and overloading in higher-order logic. In TPHOLs, pages
307–322, 1997.

[Wen02] Markus M Wenzel. Isabelle/Isar—a versatile environment for human-readable formal proof
documents. PhD thesis, Technische Universität München, Universitätsbibliothek, 2002.

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and ad-
equacy. ACM Computing Surveys (CSUR), 29(4):366–427, 1997.

EUROMILS D31.4 Page 438 of 438

	I Introduction and Context
	Overview of the Research Activities in WP31.4
	The process-algebraic approach to test-generation
	The Circus Testing Theory Revisited in Isabelle/HOL
	Symbolic Test-generation in HOL-TestGen/Cirta
	The Process-algebraic Approach: A Summary

	The Monadic Approach to Test-generation
	Test Program Generation for a Microprocessor - a Case-Study

	HOL-TestGen: Its Architecture and Methodology
	Isabelle/HOL
	The Isabelle System Architecture
	Isabelle and its Meta-Logic
	The Logical Core of HOL.
	The Conservative Extension Methodology
	Advanced Specification Constructs — Recursive Function Definitions.
	Isabelle libraries
	Isabelle Proofs
	Isabelle/HOL system features

	HOL-TestGen
	The HOL-TestGen workflow and system architecture

	The approach to test case generation and test data selection
	Test cases generation with explicit test-hypothesis
	Normal form computations
	Test data generation by constraint solving
	Test-adequacy and theoretical properties

	Summary of new HOL-TestGen Features developed in EURO-MILS

	II Test-Generation for Concurrent OS Code
	Theoretical and Technical Foundations: Testing Concurrent Programs
	Introduction
	Monads Theory
	An Example: MyKeOS.

	Conformance Relations Revisited
	Coverage Criteria for Interleaving
	Sequence Test Scenarios for Concurrent Programs
	Optimized Symbolic Execution Rules
	Test Drivers for Concurrent C Programs
	The adapter
	Code generation and Serialisation
	Building Test Executables
	GDB and Concurrent Code Testing

	Conclusions

	III Test-Generation for the PiKeOS IPC
	Testing PikeOS API
	Introduction
	PikeOS IPC Protocol
	PikeOS Model
	State
	Actions
	Traces, executions and input sequences
	Aborted executions
	IPC Execution Function
	System calls

	A Generic Shared Memory Model
	Testing PikeOS IPC
	Coverage Criteria for IPC
	Test Case Generation Process
	Symbolic Execution Rules
	Abstract Test Cases
	Test Data For Sequence-based Test Scenarios
	Test Drivers
	Experimental Results

	Conclusion
	Related Work.
	Conclusion and Future Work.

	IV Annexes
	HOL representation of PikeOS Datatypes
	kernel state
	atomic actions
	traces
	Threads

	A Shared-Memory-Model
	Shared Memory Model
	Prerequisites
	Definition of the shared-memory type
	Operations on Shared-Memory
	Sharing Relation Definition
	Properties on Sharing Relation
	Memory Domain Definition
	Properties on Memory Domain
	Sharing Relation and Memory Update
	Properties on lookup and update wrt the Sharing Relation
	Symbolic Execution rules on Memory Update
	Symbolic Execution Rules On Memory Transfer
	Properties on Memory Transfer
	Test on Sharing and Transfer via smt ...
	Adaptation For the smt Solver
	Error codes datatype

	HOL representation of PikeOS IPC error codes
	HOL representation of PikeOS threads type
	interface between thread and memory
	Relation between threads adresses and memory adresses
	Updating thread list in the state
	Get thread by thread ID

	HOL representation of state type model for IPC
	informations on threads
	Interface between IPC state and threads
	Interface between IPC state and memory model

	HOL representation of IPC preconditions
	IPC conditions on threads parameters
	IPC conditions on threads communication rights
	IPC conditions on threads access rights
	interface between IPC Preconditions and IPC 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua stateid-scheme

	HOL representation of PikeOS IPC atomic actions
	Types instantiation
	Atomic actions semantics
	Semantics of atomic actions with thread IDs as arguments
	Semantics of atomic actions based on monads
	Execution function for PikeOS IPC atomic actions with thread IDs as arguments
	Predicates on atomic actions
	Lemmas and simplification rules related to atomic actions
	Composition equality on same action
	Composition equality on different same actions: partial order reduction

	HOL representation of PikeOS IPC traces
	Execution function for PikeOS IPC traces
	Trace refinement
	Execution function for actions with thread ID
	IPC operations with thread ID
	IPC operations with free variables
	Pridicates on operations
	Simplification rules related to traces

	IPC Stepping Function and Traces
	Simplification rules related to the stepping function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 exec-actionid-Mon

	Atomic Actions Reasoning
	Symbolic Execution Rules of Atomic Actions
	Symbolic Execution Rules for Error Codes Field
	Symbolic Execution Rules for Error Codes field on Pure-level
	Symbolic Execution of Action Informations Field

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 IPC pre-conditions normalizer
	The Core Theory for Symbolic Execution of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 abortlift
	mbind and ioprog fail
	Symbolic Execution Rules on PREP stage
	Symbolic Execution rules on WAIT stage
	Symbolic Execution rules on BUF stage
	Symbolic Execution Rules on MAP stage
	Symbolic Execution Rules rules on DONE stage

	Rewriting Rules for Symbolic Execution of Sequence Test Scheme
	Symbolic Execution Rules for PREP stage
	Symbolic Execution Rules for WAIT stage
	Symbolic Execution Rules for BUF stage
	Symbolic Execution Rules for MAP stage
	Symbolic Execution Rules for DONE stage

	Introduction Rules for Sequence Testing Scheme
	Introduction Rules for PREP stage
	Introduction rules for WAIT stage
	Introduction rules rules for BUF stage
	Introduction rules for MAP stage
	Introduction rules for DONE stage

	Elimination rules for Symbolic Execution of a Test Specification
	Symbolic Execution rules for PREP SEND
	Symbolic Execution rules for PREP RECV
	Symbolic Execution rules for WAIT SEND
	Symbolic Execution rules for WAIT RECV
	Symbolic Execution rules for BUF SEND
	Symbolic Execution rules for BUF RECV
	Symbolic Execution rules for MAP SEND
	Symbolic Execution rules for MAP RECV
	Symbolic Execution rules for DONE SEND
	Symbolic Execution rules for DONE SEND

	Rules with detailed Constraints
	Symbolic Execution rules for PREP SEND
	Symbolic Execution rules for PREP RECV
	Symbolic Execution rules for WAIT SEND
	Symbolic Execution rules for WAIT RECV
	Symbolic Execution rules for BUF SEND
	Symbolic Execution rules for BUF RECV
	Symbolic Execution rules for MAP SEND
	Symbolic Execution rules for MAP RECV
	Symbolic Execution rules for DONE SEND
	Symbolic Execution rules for DONE SEND

	HOL representation of PikeOS IPC system calls
	System calls with thread ID as argument
	System calls based on datatype
	Predicates on system calls
	Derivation of communication from system calls
	Partial order theorem
	ipc communications derivations
	Lemmas on ipc communications
	No communications

	Bibliography

