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This paper discusses strategies for I/O sharing in Multiple Independent Lev-
els of Security (MILS) systems mostly deployed in the special environment of
avionic systems. MILS system designs are promising approaches for handling
the increasing complexity of functionally integrated systems, where multiple
applications run concurrently on the same hardware platform. Such integrated
systems, also known as Integrated Modular Avionics (IMA) in the aviation in-
dustry, require communication to remote systems located outside of the hosting
hardware platform. One possible solution is to provide each partition, the iso-
lated runtime environment of an application, a direct interface to the commu-
nication’s hardware controller. Nevertheless, this approach requires a special
design of the hardware itself. This paper discusses efficient system architec-
tures for I/O sharing in the environment of high-criticality embedded systems
and the exemplary analysis of Freescale’s proprietary Data Path Acceleration
Architecture (DPAA) with respect to generic hardware requirements. Based on
this analysis we also discuss the development of possible architectures match-
ing with the MILS approach. Even though the analysis focuses on avionics it
is equally applicable to automotive architectures such as AutoSAR.
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1 Introduction

Future aircraft applications demand higher processing performance for providing more and
more functionality to pilots, crew, air traffic management, airlines or passengers. Contrary,
the deployment of additional computing hardware is difficult due to considerations on fuel
economy in particular by saving weight. In addition to this trade-off, nowadays avionic sys-
tem designer are encouraged to reduce costs for their processing platforms, for example, by
reducing the physical size, weight or power consumption of the platform, but also by avoid-
ing special-custom hardware designs [1]. Recently, to solve the differences among those
three streams the trend of using multicore Commercial Off–The–Shelf (COTS) products
has introduced safety-critical embedded systems usable also for avionics. COTS multi-
core hardware address all the presented issues by providing high performance with usually
lower power consumption and small processing boards for affordable costs [1, 2]. Coin-
cidentally, COTS multicores introduce new issues like higher complexity, concerns about
life-time support of the vendors, and new questions regarding the processing platform’s
safe operation property [2, 3]. Especially long-term availability builds a major reason for
preferring one hardware architecture over another one. However, today to reduce weight
the available multicore architectures allow even tighter integration of avionic functions
that is commonly known as new generations of Integrated Modular Avionics (IMA) [4].

Lately, aviation authorities also worry about security properties, in particular for cases
where security vulnerabilities can affect safety properties of the aircraft [5]. Note, that
for avionics the primary security objective is the assurance of availability and integrity.
Confidentiality is less emphasized since it usually does not affect the system’s reliability
[6]. A challenging task for security engineers of avionics is the conjunction of relatively
new security considerations with the well-entrenched safety standards. The concepts of
Multiple Independent Levels of Security (MILS) [7] for developing secure systems fits
well with the safety-driven concept of IMA since both approaches use the idea of isolated
runtime environments for hosting applications.

To enable external communication in IMA or MILS systems, both architectures share
similar issues regarding the realization of management and handling of I/O data streams.
Usually, applications running isolated among each other on a common hardware require
sharing of hardware devices, too. The scope of this paper is the discussion of current
and novel approaches to implement I/O communication management in MILS systems.
Nowadays deployed software-based approaches usually do not demand special hardware
properties on the device itself to ensure secure (and safe) operation. However, those ap-
proaches induct increasing certification efforts, due to additional lines of code and also
decrease performance [8]. For example [9] argues that a hardware implementation of sep-
aration simplifies the software stack, and high assurance could be gained thanks to formal
verification of the AAMP7 processor. Novel hardware components provide special capabil-
ities to off-load software parts into hardware and may lead to improve the communication
management. The adaption of these hardware-based technologies for communication han-
dling to aviation environments is novel. Thus, we extend known work on I/O sharing on
MILS systems [10] to dependable secure embedded systems. In our paper we also assess
one special COTS device with a proprietary I/O architecture of the leading chip man-
ufacturer to process wired network traffic based on our generic requirements for secure
operation.

In section 2 we discuss the concept of MILS and develop generic views on optimal system
architectures with direct access to shared I/O devices based on MILS principles. Section
3 deals with general requirements on hardware devices for supporting direct interactions
of applications running isolated in partitions. Section 4 provides an overview of embedded
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systems and their solutions for high-performance I/O processing. Section 5 discusses the
proprietary Ethernet-based I/O system of Freescale’s P4080 QorIQ hardware platform—
the Data Path Acceleration Architecture (DPAA)—based on the requirements introduced
by the previous section 3. Section 6 explains our measurement setup for analyzing the
temporal interference of the DPAA components. The final assessment is discussed in
section 7. In section 8 we develop a real system architecture based on the results of our
hardware investigation and discuss its difference to the optimal approach of section 2. In
section 9 we discuss other publications related to the topic of I/O sharing and related
work with respect to the P4080 platform. Finally, section 10 summarizes our paper.

2 Generic MILS architecture with I/O

2.1 Multiple Independent Levels of Security (MILS)

The basic ideas of MILS systems trace back to the early 1970s [11]. Rushby re-introduced
these concepts and termed them MILS in the 1980s [12]. He explains MILS as a two-level
system approach [7]. First, on the system-wide level the system designers specify security
policies to define what “secure” means for a specific system. This in particular includes
information flow policies describing which software components of the system are allowed
to communicate among each other and their use of communication resources. Second,
these security policies are mapped to define rules on the lower resource sharing level. Note
that integrated systems always share resources, like memory, devices or processing cores.
Afterwards the system designers have to prove that the low-level security configuration
on the resource sharing level follows the top-level specification on the system-wide level.
According to Rushby, “the crucial feature of the MILS approach is that it separates the
problems of enforcing security policy from those of securely sharing resources” [7].

Generally, MILS systems are based on two design principles:

1. Strict Separation of processing resources for the hosted applications.

2. Controlled Information Flow to allow information flow among those by default iso-
lated applications.

Thus, a MILS-based system requires both, 1) a specific system layer that is able to sepa-
rate the processing resources for ensuring the property of strict isolation and 2) the ability
to provide well-defined communication channels for controlled information flow. A hard-
ware approach fulfilling the first requirement is the strict physical separation of resources
into isolated hardware processing environments. However, this approach usually demands
specially designed hardware platforms, e.g. multiple physically separated memories, and
is hardly feasible for COTS components.

As software approach, a Separation Kernel (SK) also implements the separation of re-
sources based on COTS hardware by using hardware support, e.g. Memory Management
Units (MMUs). Consequently, an SK can act as foundational component for a MILS sys-
tem. In terminology of SKs the separated runtime environments of the system’s resources
are called partitions. Partitions host usually small software components for building up
a secure system. To enable information flow among partitions the SK also provides con-
trolled communication channels.

The original motivation for MILS was to improve assurance in complex Multiple Levels
of Security (MLS) systems that span several security levels at the same time. The MILS
approach now allows mapping of MLS parts to SKs, which can be certified to the required
assurance [13]. Inside a partition the running application (component) should process
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only data belonging to one security domain. These components are known as Single–Level
Security (SLS). However, when designing a system out of components, it is unlikely to
deploy SLS components only. Some MLS components remain in a MILS systems. The
SK or hardware components are examples of such MLS components, since they are able
to access all data of the system. However, since MLS components have to ensure the
strict separation property of data, they should be used with special care. Due to the
de-composition of a system into analyzable components and their arrangement in layers
as suggested by the MILS approach, a comprehensible and certifiable MLS system with
the needed assurance can be constructed at affordable cost. This “divide and conquer”
approach fits well current avionic approaches of IMAs. Furthermore, the clear structure
supports correctness arguments in the certification process [14].

2.2 Interaction of Processing Cores with Hardware Devices

Essentially a processing core interacts with devices by one of the following mechanisms [15]:
The first (1) mechanism is Programmed I/O (PIO), in which the core is in charge of the
interaction with the hardware device. PIO can be implemented in two different ways:

(1a) Isolated I/O:
The core performs special assembly commands for I/O interaction with the device
registers.

(1b) Memory-Mapped I/O:
The registers of the device are mapped into the system memory where the core can
access them for performing common read/write transactions.

The second (2) mechanism is Direct Memory Access (DMA), where the hardware device
transfers data between itself and the system memory and signals the completion of this
transfer to the core, e.g. by interrupts. Interrupts are the third (3) mechanism of the
communication from devices to cores. While some interrupts are triggered by DMA to
special target addresses, so called Message Signaled Interrupts [16, section 8.6], others are
triggered via dedicated pathways. Memory-Mapped I/O (1b), DMA (2), and interrupts
via dedicated pathways (3) are important to understand this paper.

2.3 I/O Sharing

Of particular interest for MILS-based IMA systems interacting with hardware devices, is
the question of how to realize the data exchange of partitions with the device. However,
special requirements on avionic communication, e.g. introduced by using Avionics Full
Duplex Switched Ethernet (AFDX) [17], require the system to not only route incoming
data to one target partition, but also demands duplication and distribution of data streams
to multiple target partitions. Such use-case-specific functional requirements are usually
not covered by the functionality of COTS devices, which still leads to additional software
support.

Figure 1 depicts three conceivable approaches of realizing safe and secure I/O manage-
ment in IMA systems.

In software-based sharing (cf. Figure 1a) the driver of the hardware device is part of
the SK and runs within its address space and with the highest privilege level. Apart
from its task of managing the device the driver’s task is to implement the distribution
mechanism. This mechanism is in charge to classify the ingress data and to route it to the
corresponding target partition. Hence, this driver is a MLS component since it processes
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all data flowing in and out of the system. The advantage of software-based sharing is
its high flexible possibility of realization since the entire component is implemented in
software. Another positive aspect of this design is that a partition does not require any
device-specific knowledge. The driver uses the communication channels provided by the
SK to interact with the partition and thus is able to provide hardware abstraction to a
standardized interface. However, running MLS driver and routing algorithm within the
address space of the SK requires high robustness and trust into its implementation due to
the impact of possible fault propagation to the entire system in case of a device or driver
fault. Thus, such a driver requires the same level of certification as the highest subsystem
running on this platform managed by the SK, independent whether the subsystem uses
the device or not.

To reduce this impact the approach of I/O sharing places the driver inside an isolated
address space, mostly known as I/O partition (cf. Figure 1b). In this case the I/O partition
is still an MLS subsystem, since it still manages data streams of all partitions requiring
communication, despite their actual security classification. However, encapsulating this
functionality in a separated partition, reduces the impact of failure propagation to the
partitions interacting with the I/O partition only (e.g. loss of communication ability) and
allows the I/O partition itself to recover in failure case. Consequently, this encapsulation
might allow to reduce certification demands of the I/O partition to the level of the highest
subsystem interaction with the I/O partition, while still allowing higher certified system
to run on the same SK as long as they do not interact with the I/O partition.

For further improvement it is possible to deploy one SLS I/O partition for each certifi-
cation level in the system (cf. Figure 1c). This reduces the required certification effort of
each I/O partition to the highest of the connected subsystems, only. Each of those SLS
I/O partitions has a dedicated interface to its hardware device, which could be in one case
one device for each I/O partition, but could also leverage the new hardware capabilities
of self-virtualization as shown in Figure 1c. Self-virtualizing COTS hardware allows pro-
cessing, classification and distribution of data streams already in the device. Thus, the
connected SLS I/O partition will only “see” data streams of its classification and does not
have to separate data according to these classification parameters anymore.

To use this self-virtualization approach a small management driver runs in high privilege
mode (either in the SK or in a privileged partition) to set up the device via a management
hardware interface. Of course, this driver requires a high certification level, but efforts
can be kept very small since it might only run at system boot time. The self-virtualizing
device provides a configurable number of virtual functions (runtime interfaces) appearing
to the system software as dedicated devices. The SK is able to separate the access registers
of those virtual devices (e.g. by memory mapping) and assigns the virtual functions to
the SLS I/O partition directly. Within each SLS I/O partition a small runtime driver
manages the direct interaction with its virtual function. The approach introduces several
advantages:

1. The separation of the driver software into management part and runtime part allows
to implement drivers with small component code footprints. In addition only the
management driver itself is of high criticality level to the system. The criticality
level of the SLS runtime drivers depend on the connected applications, only.

2. The idea of using SLS I/O partitions reduces the required certification efforts for
those I/O partitions, which only manage data stream of low critical systems. It also
goes in line with the phrased goal in subsection 2.1 of reducing MLS components in
MILS systems.
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However, the down side of this self-virtualization approach is the increasing complexity
(e.g. routing algorithm, various interfaces) required for the hardware device itself and
additional requirements on the hosting hardware platform [8]. Nevertheless, we base
higher trust on this as this COTS component is used frequently. Also it is able to be
certified according to special certification rules [18, section 13]. This approach is justified
by the frequent use of components and, hence, ability to eliminate design failures.

3 Device Requirements for Self-Virtualization

Our use case in this paper is driven by the avionic IMA I/O distribution having also
the MILS principles and high I/O performance in mind. Avionic communication has
to unify two demands: First, the usage of COTS devices combined with second, the
introduction of special functional requirements demanded by aviation-specific technologies,
like AFDX. However, generalizing the discussion of subsection 2.3, an avionic I/O partition
is essentially a partition that shall directly interact with hardware devices. Thus for
generalization, the deployment of self-virtualizing devices in MILS systems requires the
devices to ensure the basic MILS properties of separation and controlled information flow
as well. These properties are necessary for avoiding interference of one partition interacting
with a device interface with another partition interacting with a different device interface.
Separation must be implemented by Spatial Separation and Temporal Separation:
Requirement A: Spatial Separation, the non-interference property between physical

resources, has to be enforced on the one hand to the internal resources of the device in a way
that runtime data of one runtime interface cannot interfere with data of another runtime
interface, except the devices information flow policy allows this interference. Additionally,
also the management interface, required for global device configuration, should be non-
interferable by the runtime interfaces.

The spatial separation requirement also demands the device to be capable to the access
control mechanism of the hardware platform to allow the SK the mapping of the device’s
interfaces directly into the partitions according to the system’s information flow policy.
Usually this separation is realized by interfaces assigned to different address spaces. Then
the SK is able to separate the various address ranges with the processor’s MMU as long
as the interface’s address range matches with the MMU’s granularity.
Requirement B: A special aspect of spatial separation is the consideration of DMA-

capable devices. The device (or hardware platform) has to provide means to mediate
DMA transactions to interact with different memory areas, dependent on whose behalf
the DMA is performed. If the device’s runtime interface performs the DMA, the access
should be allowed to the memory regions belonging to the associated partition, only.
DMA transfers required for the device’s operation (e.g. private swap space residing in the
system memory) should be isolated from the memory of partitions. Mediating DMA is
commonly implemented by the interaction of various components located on the device
and the hardware platform (e.g. I/O Memory Management Units (IOMMUs)).
Requirement C: Temporal Separation, the non-interference property in time, re-

quires the device to implement its functionality in a way that accesses of one runtime
interface do not affect the processing time of another runtime interface or at least that
any interference is bounded. This also applies to background operations, which can be
triggered by a runtime interface. Since self-virtualizing devices share device-internal re-
sources (e.g. the physical network connector of a network card) the device requires to
implement internal arbitration of the tasks initiated by the device’s runtime interfaces. In
the best case this property also applies to the management interface. However for avionic
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purposes this might not be demanded, since the device will be initialized before normal
operation, when strict execution times are not a requirement yet. In particular temporal
separation could be challenging in multicore environments, where (runtime) interfaces can
be accessed simultaneously by different cores.
Requirement D: Another major issue for Temporal Separation is also the device’s

Interrupt Handling since interrupts do not follow predetermined scheduling tables.
Remember, MILS-based IMA systems usually have a strict hard real-time scheduling of
multiple partitions among its cores. Runtime interrupts should affect one runtime inter-
face and interrupt the related partition only, in the best case when the partition is active.
This means for secure interrupt handling it is intended that only the connected runtime
driver is informed, which interacts with the device interface that triggers the interrupt. In-
terrupt buffering mechanisms within the device, the hardware platform [19], or the SK are
necessary to buffer the interrupt until the partition is scheduled on its cores. Global device
interrupts should be routed via the management interface to the management driver only.
In general those global interrupts should be handled immediately, which might disturb
the temporal separation property of the MILS system. Another approach is to disable
interrupts completely and poll the device interfaces for retrieving the status when the
driver is active. This polling approach has the advantage of predictability but introduces
performance overhead and delays.
Requirement E: Secure Initialization requires the device to block all runtime in-

terface interactions until the device has been configured by the management interface and
it has reached a secure state after its initialization sequence.

4 Hardware Overview

This section gives an overview on possible self-virtualization-capable implementations us-
ing the example of Ethernet-based I/O sharing. Unfortunately, publicly available infor-
mation on the following hardware platforms is limited, which make judgments difficult
on whether the implementation actually implements self-virtualization or not. However,
we think that all platforms could support self-virtualization to a certain level. The x86
architecture normally uses the Peripheral Component Interconnect Express (PCIe) stan-
dard of Singe-Root I/O Virtualization (SR-IOV) [20]. SR-IOV targets device development
capable to self-virtualization, which leaves it up to the developer of the PCIe device to
fulfill our defined requirements of section 3. However, the hosting computing platform
also needs to fulfill special requirements [8].

For proprietary implementations we researched mainly on communication processors of
different vendors. Marvel realizes in its Xelerated family a component-based network ac-
celerator [21]. Tilera provides such a communication processor with a network accelerator
for wired networks called mPIPE [22]. Cavium also has introduced a network accelerator
into their OCTEON III MIPS platform [23]. Qualcomm [24] and Texas Instruments’
OMAP [25] series are less interesting for our study since they are targeting wireless com-
munication. Last but not least Freescale provides also a component-based network ac-
celerator, called Data Path Acceleration Architecture (DPAA), on its recently launched
high-performance QorIQ PowerPC communication platforms [26]. For our study we focus
on Freescale products, which are preferably considered for future avionics. Furthermore,
Freescale matches best with the requirement of low power consumption compared to other
market competitors and acts currently as largest supplier for embedded processors in the
field of communication processors [27].
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5 Freescale’s P4080

5.1 Hardware Overview

The P4080 is an eight-core processor from Freescale’s QorIQ family and depicted in Fig-
ure 2. It supports various virtualization extensions such as a high-privileged hypervisor
mode, virtual CPU provision to guest applications, a high-performance network on-chip,
called CoreNet, and several memory protection units to control and translate memory
accesses by cores (through MMUs) and by external devices (through Peripheral Access
Management Units (PAMUs)). Note, that the MMU and the PAMU are both important
for a secure system configuration. Both management units operate as guards and have
a minimal control granularity of the page size (4 kB). This infers that they can open a
window to grant a core memory accesses to a consecutive page-aligned memory region of
at least 4 kB. The PAMU—the P4080’s IOMMU—requires for its operation an identifier
attached to each DMA transfer trigger by a device. This device-configurable identifier is
called Logical I/O Device Number (LIODN).

For external Ethernet communication the P4080 provides a high-performance Data Path
Acceleration Architecture (DPAA) on-chip and additional interfaces such as PCIe or Ra-
pidIO for plug-in devices. Each of the five available PAMUs in the P4080 is placed
in-between a subset of the external devices and the CoreNet for the purpose of observing
accesses of the devices to the system’s address space.

Of special interest for this paper are the DPAA components: Buffer Manager (BMan),
Queue Manager (QMan), and Frame Manager (FMan). Those components allow hardware
support for high-performance network I/O processing and off-load the processing cores.

5.2 Buffer Manager (BMan)

BMan’s task in the DPAA is to provide buffer pointers of allocated memory to the other
components. For this purpose a hardware component (e.g. a core or FMan) releases
buffer addresses, referencing to the I/O space in the system memory, to BMan. This
pointer again can be acquired by one of the DPAA components. Except its private swap
memory space, BMan does not allocate memory inside the system memory. The memory
allocation for I/O transactions is task of the cores and thus of software during initialization
and runtime.

For its basic configuration, e.g. setting the boundaries of its private swap space or setting
the LIODN for accessing this space by DMA, BMan provides a management interface
inside the P4080’s Configuration, Control and Status Register (CCSR) area. For runtime
interaction, i.e. releasing and acquiring buffers, BMan offers ten page-aligned and memory-
mapped software portals. Software portals in general contain the device registers required
for core-device interactions. The access of a core to a software portal is controlled by the
MMU using access windows. Due to the layout of the register map of a software portal
the most fine-granular possibility of mediating accesses is by defining the following four
windows of 4 kB in the MMU:

1. Performs buffer acquisition, e.g. receiving buffer pointers from BMan.

2. Performs buffer releases, e.g. providing buffer pointers to BMan.

3. Required for setting the buffer release commands, depending on the operational
mode configured in window 4.

4. Configuration of the software portal’s operational mode and its interrupt handling.
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Thus it is exemplary possible to permit one core the buffer acquisition and releases without
granting the same core rights to change the operational mode of the portal or handling
interrupts.

For interrupt handling BMan provides eleven interrupt signals to the P4080’s interrupt
controller: one line for each of the ten software portals and one for global BMan interrupts
usually under control of the management partition.

For the handling of different buffer shapes (e.g. different buffer sizes), BMan defines
64 buffer pools. Each pool is accessible by all software portal, i.e. each software portal can
release or acquire buffers from one of the 64 pools without isolation inside the hardware.
Additionally, BMan does not store information about the buffer shapes held inside the
buffer pools. Thus, it does not perform runtime integrity checks of the provided buffer
addresses, except pool depletion notifications.

5.3 Queue Manager (QMan)

QMan’s task in the DPAA is to provide various queuing mechanisms for buffer pointers.
The operational entity of QMan is a Frame Descriptor (FD). The essential value of an FD
is the buffer pointer and the LIODN OFFSET. Each buffer pointer points to the memory
address a packet is stored. Hence, QMan does not manage the packet data by itself but
manages their pointers. This behavior is comparable to BMan. The LIODN OFFSET in
the FD is required for calculating the final LIODN, which FMan uses to read the packet
from memory.

Several FDs can be enqueued into a Frame Queue (FQ) identified by unique identifiers.
Each FQ is capable to a different dequeue behavior, i.e. an FQ can be either parked or
scheduled. If the FQ is parked, software needs to ask for dequeuing from this FQ by using
the corresponding identifier. In contrast a scheduled FQ is automatically associated to a
Work Queue (WQ) and a WQs again to a channel. In this case QMan uses an internal
(priority-based) scheduling algorithm to provide the next FDs to a software portal. The
8 possible WQs per channel introduce the priority into the entire organization. Each
software portal has access to 16 channels, where channel 0 is exclusively accessible by a
software portal and the other 15 channels are shared among all software portals. Figure 3
provides an overview of the formerly described association. Note that QMan does not
provide access control or integrity checks of software portals to the mentioned processing
structures.

The configuration of an FQ including its dequeue behavior and its assignment to WQs
and channels happens during runtime via the software portal.

Also QMan also provides 10 page-aligned and memory-mapped software portals for run-
time interactions. In addition the management interface resides again in the CCSR. With
the help of this area the trusted software configures global settings as private swap mem-
ory, the required LIODN for accessing this swap memory, or the previously mentioned
LIODN OFFSET different for each software portal. The most fine-granular access control
to one software portal can be realized by dividing the portal into the following five pages,
each page independently controllable by the MMU windows of 4 kB:

1. Enqueues FDs into FQs.

2. Retrieves the last dequeued FDs dependent on the command configured in window 5
(see point 5).

3. Reads failure notifications, e.g. occurred during processing enqueue commands of
window 1.
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4. Configures the FQs, e.g. the state or its assignment to a WQ or channel, and contains
index registers for accessing the correct registers of the enqueue and dequeue rings1

5. For configuration of the dequeue command and dequeue mode, the portal’s interrupt
handling, as well as contains index registers for accessing the enqueue and dequeue
rings1

As BMan, QMan is connected to the interrupt controller by eleven dedicated lines, one
for each software portal, and one line for global QMan interrupts.

5.4 Frame Manager (FMan)

FMan is responsible for processing ingress and egress network data packets within the
DPAA. For this purpose FMan manages the physical network ports and uses (in normal
mode2) BMan and QMan for the address management of data buffers. Contrary to those
components, FMan does not provide software portals for runtime interaction. However,
runtime software does not have access to FMan directly. Runtime interaction to this
component is performed by the software portals of BMan and QMan.

For configuration purposes FMan offers a management interface located in the CCSR.
This management interface holds configuration value for the interface to BMan, QMan
and the network ports, packet classification, parsing patterns, or packet routing settings.
Each network port can use up to 8 buffer pools of BMan to acquire buffers for storing the
received packets by this network port. The interface to QMan is configurable with default
enqueue and dequeue FQs or with queue identifiers provided during the internal packet
classification process.

5.5 Putting them Together

This section shows the packet flow and the interaction between the three previously in-
troduced DPAA components. For simplicity we assume a faultless packet flow and do not
deal with error handling. However, the components are capable to support this feature.

5.5.1 Ingress Flow

For an ingress packet (cf. Figure 4a) the network port receives the packet data. FMan
retrieves information about packet sizes and asked BMan for an appropriate buffer address
in accordance to its set of receive pools. After retrieving a valid buffer address, FMan
copies via DMA the packet data following the first 256 bytes to the system memory using
the configured LIODN for this network port. The first 256 bytes (i.e. the packet header) is
copied into FMan’s private in-component memory for further packet classification. During
this classification process FMan determines the identifier for the target enqueue FQ for
this data packet. Afterwards, FMan transmits the first 256 bytes into the system memory
using DMA and enqueues the address of this buffer encapsulated by an FD to the gained
FQ.

Now software can receive the packet address by interacting with one of QMan’s software
portals and can process the packet including its payload. After processing, software is

1Depending on the configured processing mode in window 5 either the registers in window 4 or registers
in window 5 are required.

2FMan supports two operational modes: normal and independent. For high-performance data processing
with on-chip classification of network traffic only the normal mode is of interest. Thus, only this mode
was part of our investigation.
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required to release the data pointer back to the correct BMan pool using a software portal
(the pool identifier is part of the FD).

5.5.2 Egress Flow

For an egress packet (cf. Figure 4b), first software has to acquire a buffer address from
BMan using a software portal. The packet’s payload can now be created on this ad-
dress. Afterwards, software has to enqueue the address to an FQ using one of QMan’s
software portal. Then, FMan receives the packet pointer from QMan and copies the
packet via DMA into FMan. As LIODN for this DMA transfer, FMan adds the given
LIODN OFFSET of the FD and an internal LIODN BASE value, which is related to the
network port. After transmission of the packet to the network, FMan releases the packet
pointer to BMan’s buffer pool given by the FD and previously set by software during en-
queue. The latter avoids the usually required interrupt for signaling the buffer deallocation
to the core and increases performance.

6 Measurement Environment

The goal of our DPAA assessment is to determine whether temporal interference is observ-
able when multiple cores interact concurrently with different runtime interfaces of a DPAA
component. This is important for being able to rate whether the requirement of Temporal
Separation is fulfilled and, thus, to say whether the platform is suitable for MILS systems
considering its temporal behavior. We concentrated on the question of component-internal
interference since the DMA capability of the components for sure has interference on the
interconnect and competes on this interconnect with other cores and DMA devices [31].

For our DPAA assessment we implemented driver software for the previously described
DPAA components. These drivers use a POSIX-alike interface to an in-house developed
bare-metal OS-layer, providing the basic abstraction of the P4080’s processing units. For
temporal assessment we measured the write cycle of releasing and enqueuing buffers to
BMan and QMan. One write cycle uses a loop of 16 iterations incl. special memory
synchronization commands to write 16 consecutively arranged 32 bit registers.

Our driver code is executed by the cores coincidentally. Those cores interact with the
memory, e.g. for fetching instructions or the command words supposed to be written to
the DPAA component. Previous work on the assessment of the cores of the P4080 while
interacting with memory coincidentally [32] shows a measurable increase of the execution
latency dependent by the number of cores accessing the memory. In our assessment we
only want to measure the timing behavior of the DPAA components. Since our setup
unavoidably also uses the cores and memory we have to remove probe effects [33, Section
12.2] reasoned by those components. In our setup we expect three sources of probe effects:

1. Interference due to unfinished operations on the interconnect executed before our
code sequence under examination.

2. The memory interference due to the concurrent fetch of instructions by all cores.

3. The concurrent load of the 16 parts of the 64 bytes command word supposed to be
written to the DPAA component.

Our required code sequence comprise 15 assembly commands and thus fit into one cache
line of the P4080. For avoiding probe effects 1) and 2) we configured the P4080 to use
the L1 instruction cache only. This L1 cache is pre-loaded by double-aligning the code
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sequence to pages by introducing nop commands. The first alignment (16nop) forces the
cores to idle some time for leaving the interconnect finishing previous commands after core
synchronization for avoiding probe effect 1). The second alignment (one nop before having
the 15 commands of the loop) shall force the core to load the entire sequence into one cache
line for avoiding further instruction fetch from memory during the measurements to avoid
probe effect 2). However, to determine the effect of probe effect 2) we need to measure the
time influence of the instruction fetch. In the best case its influence is static by increasing
the number of cores.

Probe effect 3) is avoided by the alignment of the command word in the memory. The
command word is 64 bytes and fits into one cache line of the L1 data cache. The command
word is loaded from memory during the first iteration of the measurement loop. We can
determine the effect of probe effect 3) by measuring the load sequence only, without writing
the command to the device. By comparing these times with the times of the normal device
access we should be able to determine the overhead of the load cycle. In the best case the
offset between both values is positive (since writing to a device every time costs time) but
constant by an increasing number of accessing cores.

Having these probe effects in mind we defined four setups for measuring the time inter-
ference induced by the DPAA component:

Setup 1: inst fetch
We measured the time for instruction fetch without load (lwz) and store (stw)
instruction by increasing the number of accessing core step-by-step from 0 to 8 cores.
This is to determine the influence of probe effect 2). Figure 5 represents this setup
by step 1).

Setup 2: cmd fetch
We measured the behavior of the necessary data load from memory, only. This data
holds the command supposed to be written to the specific DPAA component in the
required format. For this second setup we skipped the store command (stw) to the
device. This setup is necessary to determine the influence of probe effect 3). Figure 5
represents this setup by steps 1) and 2).

Setup 3: device
We measured the normal behavior, i.e. the normal interaction with the device.
Figure 5 represents this setup by steps 1), 2) and 3a).

Setup 4: sleep fakedev
We replaced the target addresses of the store commands by an address pointing back
to a region in the main memory. This setup provided us confidence that (write)
interaction with the devices differs from interaction with the memory and thus,
verifies the results of setup 3. Due to the result presented in [32] we expect that this
setup shows higher slopes of latency by concurrent access since each core additionally
writes back to the main memory. Figure 5 represents this setup by steps 1), 2) and
3b).

For our measurements we performed 200 write cycles and averaged the results over
10 measurement repetitions. Despite those average value in our discussion we do not focus
on the absolute results but on their relationship to each other for formulating a general
statement of the behavior. Note, that the variation between our measured minimum and
maximum values do not exceed 5% of the minimum value. Thus, those value are not
recognizable in our diagrams and can be neglected in our opinion. In the following we

12



argue with the average values of our measurements. Without loss of generality all values
are retrieved from the runtime of core 0 accessing one runtime interface interfered by the
other cores accessing other runtime interfaces of the same device. The results for BMan
will be discussed in section 7.1.1. In section 7.2.1 we discuss the values for QMan. Due
to the complexity of the DPAA we omitted time measurements of FMan. Furthermore,
FMan operating in normal mode does not provide runtime interfaces to cores. This makes
reliable interference measurements difficult. However, we discuss the theoretically possible
time interference of this component in section 7.3.1.

7 Security Assessment of DPAA Components

7.1 Buffer Manager (BMan)

7.1.1 Security Assessment

Spatial Separation In subsection 5.1 we mentioned that interaction with BMan requires
access to two memory areas. First, trusted software configures BMan via the management
interface residing within the CCSR. Second, trusted or untrusted software (usually ap-
plications) can interact with BMan via one of the software portals providing the runtime
interfaces. Due to the alignment, access control to those software portals can be mediated
in a fine-granular way by the MMU. Thus, spatial separation from the perspective of the
access to the runtime interfaces is sufficiently achieved.

However, security issues arise from BMan’s internals of handling buffers. Software
interacting with one software portal can access all buffer pools managed by BMan. For
example this raises the threat scenario that one malicious application is able to acquire
all buffers previously released by a correct behaving other application. BMan also does
not offer a mechanism to limit the amount of pointers a software portal releases to a
buffer pool. This opens the threat scenario concerning availability by exhausting the
internal memory to prevent other software portals releasing their pointers. Additionally,
each software portal can retrieve the depletion states of all buffer pools without hardware
security checks.

DMA BMan only performs DMA for managing its private swap memory space. Those
accesses can be controlled by the PAMU sufficiently. The for this purpose required LI-
ODN for each BMan transaction accessing this swap space is configurable by BMan’s
management interface. For performing DMA BMan uses the DMA controller of QMan on
hardware implementation level. However, we do not see how this implementation could
be used to affect the system’s security properties.

To summarize, BMan’s DMA capability do not raise security vulnerabilities.

Temporal Separation For the temporal assessment of BMan we used the measurement
setup explained in section 6. Figure 6a shows the behavior of all four setups. The green
(and lowest) line in the diagram shows the result of setup 1, i.e. the core interference
during instruction fetch of the measurement loop. This line illustrates that the cores
almost do not interfere during instruction fetch, since the code blocks are cached in the
L1 cache of each core. Thus, memory interaction is reduced. The brown (and highest)
line in diagram 6a shows the behavior of the fake device (cf. setup 4), i.e. the values when
the command is read from the memory but also written back to memory. Compared
to the most important blue and red lines (middles ones of diagram 6a) we see that in
particular the memory writes introduce much more interference compared to the memory
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read. The blue line (note that the blue and red line are almost equal) represents the
setup 2 when the command is read from memory but the write command is replaced by
a nop command. The red line illustrates setup 3 for the normal behavior of the device
access. Both lines show almost the same values, however it is expected that setup 3 have a
higher time influence than setup 2 due to the write command. Figure 6b shows the offset
between both measurement setup, where values of setup 2 are subtracted from values of
setup 3. The diagram confirms our expectation but also shows that the offset is constant.
To conclude, BMan fulfills our requirement of Temporal Separation, since the timing of a
core accessing one software portal does not get influenced when an increasing number of
other cores access the device via other software portals concurrently.

Nevertheless, due to BMan’s usage of DMA for offloading its internal memory structures,
it is still conceivable that those DMA interfere with memory accesses of cores or other
devices [31].

Interrupt Handling BMan has eleven dedicated interrupt lines to the P4080’s interrupt
controller. Each software portal owns one line. Consequently, portals among each other
cannot interfere on one interrupt line. The eleventh interrupt is used for global BMan
interrupts and is separated from the portal interrupts. The interrupt controller, which is
under control of the SK, is able to route or mask interrupts to cores from each of those
lines. Additionally, because of the software portal’s layout of the register map, the access
to the register required for the portal’s interrupt handling can be further restricted by the
MMU.

In our opinion the provided interrupt architecture is sufficient for secure interrupt han-
dling of BMan.

Secure Initialization After system reset BMan is deactivated. The initialization of BMan
is performed by the management interface residing in the CCSR and restricted to the SK
only. The MMU protects this configuration area from other accessing entities than the
SK. For enabling BMan the SK has to set up the memory address and the size of its
private swap memory. Writing the size register triggers the initialization procedure of the
component and enables access to the software portals. In the error case BMan might signal
a failure via a global interrupt. However, the component does not provide a dedicated
register signaling its proper initialization, and thus, it is not observable by the trusted
software when this process has finished to allow untrusted software to start interacting
with the component.

7.1.2 Improvements and Workarounds

With respect to the hardware improvements we recommend to implement the ability for
strict spatial separation inside the buffer management part of BMan. For example this
could be implemented by additional configuration registers in the CCSR, which configure
access matrices of software portals to buffer pools. Furthermore, a limitation of pointers
for each buffer pool will be helpful to prevent software portals to exhaust BMan’s memory.
In addition, we also recommend to add a flag showing that the initialization procedure of
BMan has been successful.

A possible workaround for dealing with the vulnerability of shared pool accesses in the
P4080 while still being able to use it for a MILS system is to extract the driver part from
the untrusted parts of the system. This driver is placed into an extra partition and is
required to demonstrate its proper operation. This is achievable since the trusted driver
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is very small and it only interacts with one software portal performing buffer acquisition
and releases. The main security achievement of this driver is to introduce the missing
access control matrices of software portals to buffer pools. Using all ten software portals
separately can be achieved by instantiating this small driver ten times.

7.2 Queue Manager (QMan)

7.2.1 Security Assessment

Spatial Separation For QMan we see a security issue in terms of Confidentiality by the
possibility of accessing shared pool channels by all software portals without further access
control on hardware level. Via those channels data can be transmitted from one partition
to another one by abusing QMan, which builds finally a covert channel [34]. Abilities of
restricting access of software portals to the shared pool channels and using the dedicated
channel would solve this issue. So far we do not see security issues concerning Integrity or
Availability in the QMan architecture.

DMA QMan performs DMA for managing its private swap memory only. An SK-
configurable register in the CCSR provides the LIODN for those transactions. Hence,
the PAMU then control check those DMAs.

Even if QMan shares its connection to the CoreNet with BMan we do not see how
malicious software could use this design decision to attack the system.

Additionally, QMan provides indirectly the LIODN for DMA transfers performed by
FMan for the transmission of packets by setting the LIODN OFFSET value in the FDs.
We rate it as security-enhancing, that the LIODN OFFSET in the FDs cannot be set
by software via a software portal but can be configured by the management interface via
the CCSR only. Consequently, software cannot misuse other hardware components (like
FMan, when performing packet transmission) to access memory areas the software is not
permitted to.

Temporal Separation For the temporal assessment of QMan we again performed our
measurement setup of section 6. Like in case of BMan, the green line in diagram 7a illus-
trates the instruction fetch (setup 1) of the interaction sequence with the device without
load and store instructions. Again, we can conclude that due to the enabled L1 instruc-
tion cache the cores do not interfere significantly while performing the required memory
interaction for instruction fetch. Also similar to BMan is the brown/filled circle graph of
setup 4 showing again a huge influence when the store commands write back to a memory
region. Furthermore, setup 2—the blue line—and setup 3—the red line—show the same
behavior like BMan. Diagram 7b plots the offset of both graphs. This diagram again shows
that the write cycle to the device only adds and constant offset to the processing time
with an increasing number of accessing cores to QMan’s software portals. Thus, QMan
internally supports the property of Temporal Separation of its software portals sufficiently.
However, also QMan uses DMA for offloading its internal processing structures into the
memory. These DMA’s can induct interference with other cores and devices accessing
memory as shown in [31].

Interrupt Handling In essence the assessment of BMan’s interrupt handling in sec-
tion 7.1.1 applies also to QMan. Nevertheless, there is one difference due to the layout
of the memory map of a software portal: The interrupt handling registers of a software
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portal cannot be split apart from the runtime software since registers located in the same
memory page are required for processing enqueue and dequeue commands.

However, this does not change our opinion regarding the sufficiency of the implementa-
tion for secure interrupt handling of QMan, since each software portal has its own interrupt
line to the P4080’s interrupt controller.

Secure Initialization QMan’s properties of secure initialization are equals with the ones
provided by BMan analyzed above in section 7.1.1.

7.2.2 Improvements and Workarounds

To improve the hardware design itself we suggest to alias the producer index register
required for writing the enqueuing ring, and consumer index register required for reading
the dequeuing ring or the message ring into the memory pages the associated rings are
already located. This modification would enable the possibility to grant dedicated access
to the required ring pages only. Since the dequeue command register would be still located
in a different page (window 5) than the dequeue ring processing registers (window 2), a
secure system design were possible, in which an untrusted (receive) driver can just dequeue
frames without being able to change the dequeue command for sneaking FDs of other FQs.

However, this hardware improvement still has the security vulnerability that each soft-
ware portal can enqueue FDs to each FQ, which for example could be used for illicit
data flows to other portals. To counteract this vulnerability the hardware should provide
a hardware-configurable access matrix in the management interface to control enqueue
access of software portal to FQs. If this feature is implemented for this case, it will be
also the possibility to introduce the same functionality for the dequeue and message rings,
which also would disarm the vulnerability of dequeuing various FDs.

Using the available hardware architecture for secure I/O sharing it is necessary to coun-
teract the identified limitations by software. For this purpose a small trusted and en-
capsulated runtime driver is required that interacts with a software portal. The security
achievement of the driver is to implement the missing access control matrices, which con-
trol the access of software portals to FQs. Multiple software portals can be handled by
multiple instances of this driver.

7.3 Frame Manager (FMan)

7.3.1 Security Assessment

Spatial Separation In normal mode FMan provides only a management interface for
configuration purposes. Runtime interaction are performed on behalf of BMan for buffer
management and QMan for data movement. FMan is hard wired to both components for
receiving and transmitting packet pointers. The setup of FMan can be done at system
boot time and for avionic purposes stay mostly static during runtime. Thus, during
runtime direct interactions of untrusted partitions with FMan are not required. This also
means that spatial separation of the component’s interface is implemented sufficiently.
Analysis of FMan’s internal structure is difficult to evaluate due to the lack of direct
access from a runtime interface. From an analysis view of the documentation, FMan shares
its internal memory among all packets. Also the sub-components, responsible for packet
parsing and classification are shared. Thus, we assume that packet data will be distributed
within FMan according to the available internal resource without having a visible “spatial”
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separation. However, in our case setup we have not been able to exploit this architecture
and to break the internal resource separation of the component. More detailed analysis will
require further, probably company-confidential information of FMan’s vendor Freescale.

DMA FMan is in charge to perform DMA with the partition’s memory for the purpose
of receiving and transmitting the data packets. The PAMU is able to control those DMA.
The essential LIODN is calculated by values configurable for the physical network interface
the packet is processed by and for the transmission part also configured by the management
interface of QMan. Since runtime interfaces are unable to modify the LIODN values DMAs
can be restricted by the PAMU sufficiently.

Additionally, for packet transmission, i.e. reading data from a partitions memory, we
do not see an issue in FMan’s internal processing in terms of security properties. The
transmitting buffer can reside within the partition’s memory space. This memory is pro-
tectable by the PAMU. However, the driver has to ensure the correct values for the BMan
buffer pool during buffer management.

A security issue arises for the reception part of data packets. As soon as FMan receives
a data packet it asks BMan for a data buffer. Afterwards, FMan copies all data bytes
following the first 256 bytes via DMA to this buffer located in the system memory. As
next step, FMan performs packet classification on the remaining 256 bytes. As last steps,
FMan copies the 256 bytes via DMA to the in step one released buffer and enqueues the
buffer pointer to the queue determined by the classification results.

The issue arising from this processing sequence is that the data packet is transmitted to
the system’s memory before the data has been classified. This means that it is impossible
to route the DMA into the correct partition directly.

Temporal Separation FMan does not provide a runtime interface to software in normal
operation. Thus, we are unable to interact with FMan exclusively. In consequence we are
also unable to provide real system measurement values as provided for BMan and QMan.
However, due to its DMA capability for reading and writing processed packet from/to
memory, we expect again that cores or other DMA-capable devices are able to temporally
interfere with FMan. Furthermore, we expect that internal temporal separation exists
sufficiently, i.e. an attacker is unable to retrieve information on the internal processing
and also unable to manipulate the internal operation of FMan.

Interrupt Handling All FMan components provide various sets of interrupts. However,
since FMan does not provide a runtime interface to handle runtime-specific interruption all
interrupts have to be handled by the SK. For security this is sufficient but could be prob-
lematic for performance reasons in particular since one core could interrupt another one
(processing another application) by sending faulty data packets. However, this depends
also on the system’s configuration and on which core the SK handles interrupts.

Secure Initialization All components of FMan are deactivated on system reset. The
initialization is initiated by writing to component-dependent registers. Some components
require a special amount of processing cycles until the initialization has been finished.
However, those components do not allow to determine the current of the initialization
phase. They only block access to their functionality, which could allow data packets to
pass FMan without proper classification. Data processing itself can be enabled by writing
registers in the BMan Interface of FMan. Errors during the initialization phase might
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be reported via interrupts. However, the missing status bits for secure initialization arise
security issues, since software can not prove the secure state of the component.

7.3.2 Improvements and Workarounds

Most parts of FMan are hard-coded and thus are not applicable to modifications. How-
ever, a small part of FMan’s processing behavior can be updated by a firmware. After
discussing our findings with Freescale we received the confirmation that FMan’s parti-
tioning security issue due to selecting the receive buffer before data classification cannot
be fixed by changing this firmware in the P4080. However, Freescale has been developed
the successive T-series of its PowerPC architecture also containing the DPAA. In new
T-series Freescale further improves the FMan implementation and introduces the concept
of virtual storage profiles, which enable the developers to implement the identified missing
functionality [35, section 5.10.5.1.2].

Regarding secure boot we recommend that all FMan components should provide status
identifiers signaling their proper initialization.

8 MILS Architecture on P4080

Our assessment of Freescale’s DPAA on the P4080 platform has shown deficiencies of
separation properties to use the hardware accelerator in a MILS system, when untrusted
drivers shall be used for managing the hardware. However, those limitations can be cir-
cumvented by using small trusted drivers implementing some functionality in software
and running in isolated partitions with dedicated direct access to the runtime interface
of the DPAA components. In subsection 2.3 we discussed approaches of realizing I/O
in MILS-based IMA systems. Remember, deploying COTS I/O hardware for IMA still
require some software to implement special functionality required by avionic-specific com-
munication technologies, like AFDX data distribution. This matches with the outcome of
the DPAA analyzes, which also requires (trusted) software for secure data handling. In
the following we will discuss possible system solutions based on our results.

8.1 MLS I/O Partition

Figure 1b shows the approach of IMA systems for realizing shared devices. Here the
implementation combines the driver and a software-based data distribution in a central
MLS I/O partition. This approach is similarly applicable to circumvent the identified
limitations of the discussed DPAA components. The reason is that the MLS I/O partition
software is system critical and thus highly trusted and each communicating partition is
routed to the hardware via this I/O partition. However, MLS I/O partitions introduce
a high certification overhead, due to their system critical functionality with respect to
security and safety.

On implementation level the driver part of the MLS I/O partition interacts with one
runtime interface of BMan and one runtime interface of QMan, only. The required I/O
buffers for packet receive and transmit paths are also encapsulated inside the I/O parti-
tions’ boundaries. Since the interacting software component is trusted, spatial isolation
properties inside the DPAA components are not required. However, this approach utilizes
the provided hardware features of the P4080 inefficiently, which reduces performance.
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8.2 SLS I/O Partition

First, a small trusted runtime driver in an isolated partition for each provided runtime
interface is sufficient to circumvent the limitation of security features of BMan
and QMan. Combining this need with the idea of implementing the required functionality
in software leads to the idea of using multiple SLS I/O partitions (cf. Figure 1c). Other
application partitions get access to the SLS I/O partitions via communication channels
provided by the SK.

The runtime drivers have two differing tasks:

1. For BMan it manages the (local) buffer pools required for the communication.

2. For QMan it controls the setup of the queues and in particular to restrict the access
to valid queues for enqueue and dequeue operations.

Multiple SLS I/O partitions improve the approach of one MLS I/O partition (cf. Figure 1b)
regarding reduced code complexity and expect higher performance. Performance stems
from enhanced utilization of hardware features. Complexity reduction stems from using
SLS instead of MLS components. This SLS approach differs to the one presented in Fig-
ure 1c since each system critical runtime driver runs encapsulated in its own partition
and outside of the less critical SLS I/O partition. Thus, it decouples the highly trusted
drivers from the less trusted distribution functionality of the SLS I/O partition as shown
in Figure 8.

Second, FMan does not allow to route receiving data packets directly into the correct
target partition. To circumvent FMan limitations it is possible to use a global read-
only memory resource among all SLS I/O partitions to receive data from FMan. Given
by FMan’s hardware-internal processing flow, it first transfers the packet data (higher
256 bytes) of a receiving packet directly to this read-only memory. Afterwards, FMan
determines the correct SLS I/O partition by analyzing the header of the packet, transfers
the header to the read-only memory, and enqueues the buffer pointer into a queue targeting
the respective SLS I/O partition. This receiving SLS I/O partition retrieves the valid
pointer and can read it from the globally accessible read-only memory. Finally, it can
process the entire packet and distribute the payload to other partitions.

The read-only property of this memory area is required to fulfill the integrity property,
since otherwise every SLS I/O partitions could modify all data packets, even if they belong
to a different SLS I/O partition. As long as confidentiality is not claimed by the system’s
security policy, this approach allows to decrease the certification effort for the SLS I/O
partitions depending on the subsystems connected to an instance of such a I/O partition.
For today’s avionic system we can assume this fact, since the major concern is the reliable
operation of the system (thus availability and integrity) and not its confidential operation.
However, if confidentiality is demanded all SLS I/O partitions are required to be highly
trusted again. For sending packets the I/O buffer can reside within the SLS I/O partition
satisfying all security properties.

9 Related Work

Bradetich, Alves-Foss et. al deny in [10, 36] their recommendation to use the DPAA for
general purpose MILS systems. Despite our support for their opinion that the P4080
generally misses features for being used in general purpose MILS systems, their rationale
for this conclusion is incomplete from our perspective. In [36] the authors claim limitations
of BMan, we have figured during our study as well. Beyond this work, we have analyzed
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BMan more detailed and additionally investigated QMan and FMan. Furthermore, we
provided possible approaches to workaround the identified limitations of those components
in particular with respect to the requirements of avionic MILS systems and other systems
requiring availability and integrity properties only.

Münch et. al discuss in [8] the use of PCIe SR-IOV-capable hardware devices, their
limitations on Freescale’s P4080 platform and possible circumvention. To conclude this
work, the P4080 supports the basic functional requirements for SR-IOV devices but does
not provide enough hardware protection functionality for strict spatial separation. Thus,
SR-IOV-capable network cards cannot be used for MILS systems sharing the network link.
The DPAA could replace this technology but requires the implementation of the discussed
approaches.

Nowotsch and Paulitsch performed in [32] measurements on multicore interference by
using various memory access patterns of cores. Their platform of examination has been
Freescale’s P4080, too. The motivation of their analysis had a safety background. However,
our work in this paper extends their work with the investigation of other on-chip hardware
accelerations and adds the security perspective.

10 Conclusion

The scope of our paper was to examine strategies for sharing device access of systems using
the design principles of Multiple Independent Levels of Security (MILS). We first defined
our view on MILS and discussed afterwards generic strategies for secure device sharing.
Some of those strategies have been implemented in current avionic software. However,
the demand for higher performance brings us nowadays into the position to examine
sharing strategies, which improve utilization of direct hardware access. Thus, we defined
general requirements on hardware devices for allowing direct access to the device of various
untrusted applications encapsulated by partitions following the MILS principles. In the
following we exemplarily investigated the Data Path Acceleration Architecture (DPAA),
e.g. available on Freescale’s P4080, which is considered as a candidate for future avionic
systems. We evaluated the network processing components of the DPAA against our
previously generic derived hardware requirements. Our conclusion is that the components,
in particular Buffer Manager (BMan) and Queue Manager (QMan) do not provide enough
separation properties to allow access to the components by untrusted software. However,
by knowing the limitations we can provide workarounds, which still allow an improved
utilization of hardware. That promises a gain of performance. This performance increase
results in particular due to the avoided payload transfers for passing partition borders
usually present in MILS-based systems. We presented a novel secure architecture that
addresses availability and integrity properties despite the lack of hardware separation.
This architecture is built on Single–Level Security (SLS) software components ensuring
separation. Smartly leveraging multiple SLS components instead of a Multiple Levels of
Security (MLS) component reduces the code complexity of the MILS system. Finally,
this reduces the effort for the certification process required for highly critical embedded
systems, such as avionics.
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