
Distributed MILS (D-MILS)
Specification, Analysis, Deployment,

and Assurance of
Distributed Critical Systems

Harald Rueß (fortiss, München)
Stefano Tonetta (FBK, Trento)

D-MILS Project Overview 1 © 2015 D-MILS Project

European Commission FP7
ICT-2011.1.4 Trustworthy ICT

Project #318772
 2012 – 2015

D-MILS Consortium

RWTH Aachen University (DE)
The Open Group (UK) Lead
TTTech (AT)
Université Joseph Fourier (FR)
University of York (UK)

CONSORTIUM PARTNERS:
Fondazione Bruno Kessler (IT)
fortiss (DE)
Frequentis (AT)
LynuxWorks (FR)

D-MILS Project Overview 2 © 2015 D-MILS Project

Overview

n  Part 1: D-MILS project overview
t  Overview of the consortium
t  Objectives of the project and areas of work
t  Overview of the approach and the D-MILS platform
t  Specification language
t  Verification framework
t  Deployment on the D-MILS platform
t  Assurance case

n  Part 2: Verification framework
t  Overview of the compositional approach
t  Target requirements
t  Annotation language
t  Verification algorithms
t  Tool support

D-MILS Project Overview 3 © 2015 D-MILS Project

Scientific and Technical Objectives Summary

n  High-level specification in declarative languages
n  Comprehensive: “Top-to-bottom” and “End-to-end”

n  Pervasive automation support

n  Compositional verification of desired properties

n  Integrated assurance case for certification support

n  Distributed platform configuration compilation
n  Strong analytical environment

t  Security and dependability attributes of system
computed from the properties of the
components and the architecture

D-MILS Project Overview 4 © 2015 D-MILS Project

Scientific and Technical Objectives

“Top-to-bottom” coverage:
t  High-level, graphical architectural design in AADL
t  Behavior specification with AADL behavioral

annex
t  Property specifications in AADL annotations
t  Integrated verification represented via graphical

Goal Structuring Notation (GSN)
t  Architectural-level verification
t  Automated inventory of hardware platform

resources
t  Synthesis of low-level component configurations

D-MILS Project Overview 5 © 2015 D-MILS Project

Scientific and Technical Objectives

“End-to-end” coverage:
t  Implementation-independent architectural

specification
t  High-level specification of dependability attributes
t  Seamless realization of distributed architectures
t  Verify that component composition supports

dependability attributes
t  Modular and scalable deterministic platform
t  Incremental binding of architecture,

implementation, integration, and deployment
parameters

 D-MILS Project Overview 6 © 2015 D-MILS Project

Technical Results Expected

n  Standardized, component-based high-assurance
distributed platform

n  Compositional assurance of systems from
component assurance and composition analysis

n  Framework for certification of systems built on the
platform supported by extensive automation

n  Enable application architectures to seamlessly
span multiple nodes, for scalable determinism

n  Industrial D-MILS Pilots / Technology Evaluation
t  Frequentis Voice Services
t  fortiss Smart Microgrid

D-MILS Project Overview 7 © 2015 D-MILS Project

D-MILS Benefits

n  A single policy architecture may span multiple D-
MILS nodes expressed in declarative MILS-AADL

n  Guarantees similar to a single MILS node: isolation,
information flow control, determinism

n  Determinism over network could be achieved in
various ways – D-MILS uses Time-Triggered
Ethernet

n  Configure and schedule the network and the
processors of the nodes coherently

n  Verify architectural-based properties, develop GSN
assurance case, synthesize platform configuration,
using integrated tool chain leveraging existing
verification technology (nuSMV, OCRA, BIP, AF3)

D-MILS Project Overview 8 © 2015 D-MILS Project

D-MILS Research and Technology
Development Areas

Architecture
Analysis and

Design
Language

MILS-AADL

Inter-
mediate

Languages

Verification
Framework

MILS Platform
Configuration

Compiler

D-MILS
Platform
target

Extended
Separation

Kernel

Ext. Time
Triggered
Ethernet

Target
Configuration

tools

Assurance
Framework

Goal
Structuring
Notation

Behavior
Annotation Property

Annotation

D-MILS
Platform

Configuration
Synthesis

Integration
GSN & AADL

Graphical & Declarative Languages

Compositional
Verification

Compositional
Assurance Case

Representation
Semantics and
Transformations

Pre-existing
products LSK TTE

D-MILS Project Overview 9 © 2015 D-MILS Project

Distributed MILS (D-MILS):
Policy architecture deployment spanning nodes

Node Hardware	

SK	

MNS	

Node Hardware	

SK	

MNS	

Node Hardware	

SK ⊕ MNS ���
Foundational Plane	

+	

 →	

Node Hardware	

Subjects	

 Subjects	

Subjects	

MNS – MILS Networking System SK – Separation Kernel
D-MILS Project Overview 10 © 2015 D-MILS Project

Distributed MILS Platform –
MILS nodes with deterministic communication

TTEthernet

Enables: Realization of
deterministic
distributed MILS
architectures

A Distributed MILS Platform:

Node Hardware	

SK ⊕ MNS ���
Foundational Plane	

Node Hardware	

SK	

MNS	

SK	

MNS	

SK	

MNS	

SK	

MNS	

Node Hardware	

 Node Hardware	

 Node Hardware	

SK	

MNS	

TTE Switch TTE Switch

TTE Switch

D-MILS Project Overview 11 © 2015 D-MILS Project

D-MILS Implementation

n  The policy architecture:

n  …may be deployed on a distributed MILS separation
kernel with two nodes, MNS and TTEthernet as follows:

SK SK

D-MILS Project Overview 12 © 2015 D-MILS Project

Demonstrator: fortiss Smart Microgrid

D-MILS Project Overview 13 © 2015 D-MILS Project

Smart Microgrid
Architectural View

n  Smart grid sends the current price of energy.
n  Each prosumer sends a plan indicating how much energy it intends to

consume and provide during the day.
n  Smart grid checks whether the grid can support the resulting

consumption or production.
n  If the overall plan is not feasible, the prosumers need to modify their

plans and resend them.
n  The negotiation continues until the plans are accepted.

D-MILS Project Overview 14 © 2015 D-MILS Project

Smart Microgrid
Prosumers

D-MILS Project Overview 15 © 2015 D-MILS Project

Demonstrator: Frequentis Voice Services

cwp... controller working position
rce...radio control equipment
r-rce...remote rce
c-rce...center rce
swim...system wide information management

D-MILS Project Overview 16 © 2015 D-MILS Project

Summary of Accomplishments to Date

n  Defined syntax and formal semantics of MILS-AADL dialect

n  Parser for MILS-AADL

n  Transformations of MILS-AADL for verification and configuration

n  Compositional verification framework for MILS-AADL models

n  Foundations and tool support for compositional GSN assurance cases

n  Synthesis of MILS component configuration data for target components

n  Operational D-MILS Platform (distributed LynxSecure separation kernel
running over TTEthernet)

n  MILS Platform Configuration Compiler providing synthesis of
configuration data for target platform components

n  Two industrial demonstrators in progress: fortiss smart micro grid and
Frequentis Voice Services

D-MILS Project Overview 17 © 2015 D-MILS Project

Verification Framework
n  The framework consists of a collection of tools

integrated to support modeling, validation and
verification

n  Modeling language: MILS-AADL
t  With a formal semantics

n  Validation with
t  Simulation
t  Deadlock checking
t  Timelock checking
t  Reachability and other queries in temporal logic

n  Verification of
t  Functional requirements
t  Real-time requirements
t  Security requirements
t  Safety requirements

18 D-MILS Verification 18 © 2015 D-MILS Project

Compositional approach
n  Framework based on a compositional

approach
n  System properties are inferred by component

properties
n  Advantages:

t  Efficient reasoning
t  Delegate proof of application components to the

provider
t  Focus on the verification of the architecture

n  Formalized assumptions: components’
expectations on their environment
t  Assumptions must be satisfied by the environment

19 D-MILS Verification 19 © 2015 D-MILS Project

Starlight example (architecture)

H

L

D U

D-MILS Verification 20 © 2015 D-MILS Project

Starlight example (verification)

n  The system provides some service to the user
t  The user issues commands that are processed by H or L

n  Functional requirement: the system returns the
correct result

n  Commands labeled with high and low security levels
t  The user must switch the system to high before issuing

a high command
n  Security requirement: the low component must not

receive high commands
n  Safety requirement: the system satisfy functional

and security requirements even if some
subcomponents fail

n  System requirements guaranteed by the properties
of the subcomponents

D-MILS Verification 21 © 2015 D-MILS Project

Requirements and properties
n  Functional requirements:

t  Invariants
t  Temporal logic

n  Real-time and hybrid requirements
t  Functional requirements with timing constraints

and taking into account models of physical
components

n  Security requirements
t  Requirements implementing security functions
t  Non-interference

n  Safety requirements
t  Requirements related to safety
t  Modeled and verified taking into account failures

D-MILS Verification 22 © 2015 D-MILS Project

Annotation language
n  Used to formalize requirements and specify

verification tasks
n  Annotations are interpreted by the specific tool

t  Tool’s specification syntax with references to the MILS-
AADL model

t  Example:
{OCRA: CONTRACT st

 assume: always ({secret(cmd)} implies
 ((not {switch_to_low} since{switch_to_high})));
 guarantee: never {secret(low_cmd)};

}
n  Possibility to connect to other tools (e.g., crypto

protocol verification)

D-MILS Verification 23 © 2015 D-MILS Project

Verification issues
n  MILS-AADL models have infinite-domain

data variables, continuous-time
semantics, with safety and security
concerns

n  Model checking of reachability for infinite-
state systems is a hard problem

n  Temporal logic even harder
n  Safety and security properties harder and

harder
n  Major problem of model checking in

general: scalability

D-MILS Verification 24 © 2015 D-MILS Project

Infinite states of MILS-AADL
n  Semantics of MILS-AADL models is a transition

system
n  States given by component modes and assignment

to data variables
n  Data types include integer and real
n  Parameters may include undefined functions (e.g.,

“computation(data)” or “is_secret(data)”)
n  Standard approaches:

t  Abstraction
•  Requires refinement in case of false positive

t  Automatic abstraction refinement
•  Typically does not scale

t  Induction, k-induction, theorem proving
•  Requires to provide manually lemmas

D-MILS Verification 25 © 2015 D-MILS Project

Bad
states

IC3

n  New technique (Bradley 2012) to prove invariants automatically finding
a suitable inductive invariant.

n  Currently recognized as the most effective model checking algorithm.
n  Build an inductive invariant 𝐹 such that 𝐹⊨𝑃

n  Trace of formulas ​𝐹↓0 =𝐼, ​𝐹↓1 ,…, ​𝐹↓𝑘  such that:
t  ​𝐹↓𝑖+1 ⊆ ​𝐹↓𝑖  (​𝐹↓𝑖 ⊨​𝐹↓𝑖+1 )
t  ​𝐹↓𝑖 ∧𝑇⊨​𝐹↓𝑖+1 
t  ​𝐹↓𝑖 ⊨𝑃

n  Eventually either counterexample is found or ​𝐹↓𝑖 ≡ ​𝐹↓𝑖+1  proving 𝑃
n  Mixture of inductive reasoning and search-based techniques

Initial
states

T
​𝐹↓1  T T

​𝐹↓𝑘−1  T
​𝐹↓𝑘 

D-MILS Verification 26 © 2015 D-MILS Project

IC3 + implicit abstraction
n  Integrated with predicate abstraction
n  Only the evolution of a set of predicates is tracked

in the abstraction, the rest is abstracted away
n  Implicit abstraction does not compute the abstract

state space
n  Definition of predicates embedded in the transition

relation
n  Abstraction refinement is fully incremental

t  Can keep previous trace ​𝐹↓1 ,…, ​𝐹↓𝑘 
t  Abstract transition relation strengthened by additional

predicates
n  Implemented in nuXmv

D-MILS Verification 27 © 2015 D-MILS Project

Temporal logic
n  Many requirements formalized into temporal logic (e.g.

LTL)
n  No effective procedure to verify LTL over infinite-state

systems
n  Standard automata-based approach to 𝑀⊨𝜙:

t  Reduction to check that a certain condition 𝑓 can be visited
finitely many times

n  K-Liveness (Classen & Sorensson 2012):
t  Key idea: check if 𝑓 can be visited at most 𝑘 times for

increasing value of 𝑘
t  Reduced to invariant checking
t  Very efficient for finite-state systems
t  Integrated with IC3 for an incremental check of different 𝑘

n  Implemented in nuXmv
t  Combined with IC3IA for verification of infinite-state systems

D-MILS Verification 28 © 2015 D-MILS Project

K-liveness for timed/hybrid models
n  Problem for parametric and real-time/hybrid systems

t  The number of visits of 𝑓 can depend on parameters
t  𝑓 can be visited an arbitrary number of times in a finite amount of

time (related to Zeno paths)

n  K-Zeno: check if there is a bound on the number of times the
fairness is visited along a diverging sequence of time points

n  Essential point: use an additional transition system ​𝑍↓𝛽  to
force a minimum distance 𝛽 between two fair time points

n  Note: 𝛽 is a symbolic expression over parameters and
variables.

n  Key contribution: define 𝛽 so that, if 𝑀⊨𝜙, then there exists 𝑘
such that 𝑓 can be visited at most 𝑘 times.

n  Implemented in nuXmv and integrated in HyCOMP for the
verification of hybrid systems

D-MILS Verification 29 © 2015 D-MILS Project

Contract-based reasoning

n  Assumptions and guarantees expressed
in temporal logic

n  Refinement proved generating a set of
proof obligations in temporal logic

n  Proof obligations discharged with k-
liveness/k-zeno

n  Implemented in OCRA

D-MILS Verification 30 © 2015 D-MILS Project

Automatic generation of invariants
n  Previous method requires a manual definition of the

decomposition
n  Other methods generate components’ properties automatically
n  Application for timed systems and timed properties
n  Observation:

t  invariant generation methods ignore time synchronization
t  invariants generated on timed models are too weak

n  New approach
t  strengthening the invariants by exploiting time properties
t  augment atomic components with additional history clocks
t  generate local invariants for extended components
t  infer additional history clock constraints from interactions

n  Method implemented and experimented on classical
benchmarks
t  D-Finder prototype for Real-Time BIP
t  additional heuristics to improve scalability

D-MILS Verification 31 © 2015 D-MILS Project

Secure-BIP

n  An extension of the BIP component
framework with Information Flow Security

n  Secure-BIP = BIP + security annotations
t  security labels on ports and variables
t  track information flow of interactions and data

n  Two notions of non-interference studied:
t  event non-interference wrt interaction flow
t  data non-interference wrt data flow

n  Static verification of non-interference
t  based on sufficient syntactic conditions
t  implemented in the Secure-BIP tool

D-MILS Verification 32 © 2015 D-MILS Project

D-MILS Toolset

COMPASS

Configuration
Compiler

BIP SMV OCRA

D-Finder nuXmv

xSAP

OCRA
SMC-BIP

MILS-
AADL

D-MILS Verification 33 © 2015 D-MILS Project

Tool support for algorithms
n  OCRA/nuXmv covers:

t  Invariants
t  LTL
t  LTL with real-time constraints
t  LTL for hybrid systems

n  BIP covers
t  Deadlock
t  Transitive Non-interference

n  Intransitive non-interference will be structurally
guaranteed by the MILS-AADL model.

n  Safety addressed with
t  COMPASS by model extension and applying above

compositional methods on the extended models
t  XSAP for fault tree analysis

D-MILS Verification 34 © 2015 D-MILS Project

Conclusions

n  Verification framework based on formal methods
n  Focused on analysis of architecture
n  Main concerns: automation, efficiency,

representation of requirements
n  Compositional approach formalizing assumptions

and guarantees of components
n  Model-based approach, i.e. same model for

analysis, for platform configuration, for assurance
case

n  Evidence of architecture correctness combined with
arguments on the platform in the assurance case

D-MILS Verification 35 © 2015 D-MILS Project

