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Overview 

n  Part 1: D-MILS project overview 
t  Overview of the consortium 
t  Objectives of the project and areas of work 
t  Overview of the approach and the D-MILS platform 
t  Specification language 
t  Verification framework 
t  Deployment on the D-MILS platform 
t  Assurance case 

n  Part 2: Verification framework 
t  Overview of the compositional approach 
t  Target requirements 
t  Annotation language 
t  Verification algorithms 
t  Tool support 
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Scientific and Technical Objectives Summary 

n  High-level specification in declarative languages 
n  Comprehensive: “Top-to-bottom” and “End-to-end” 

n  Pervasive automation support 

n  Compositional verification of desired properties 

n  Integrated assurance case for certification support 

n  Distributed platform configuration compilation 
n  Strong analytical environment 

t  Security and dependability attributes of system 
computed from the properties of the 
components and the architecture 
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Scientific and Technical Objectives 

“Top-to-bottom” coverage: 
t  High-level, graphical architectural design in AADL 
t  Behavior specification with AADL behavioral 

annex 
t  Property specifications in AADL annotations 
t  Integrated verification represented via graphical 

Goal Structuring Notation (GSN) 
t  Architectural-level verification 
t  Automated inventory of hardware platform 

resources 
t  Synthesis of low-level component configurations 
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Scientific and Technical Objectives 

“End-to-end” coverage: 
t  Implementation-independent architectural 

specification 
t  High-level specification of dependability attributes 
t  Seamless realization of distributed architectures 
t  Verify that component composition supports 

dependability attributes 
t  Modular and scalable deterministic platform 
t  Incremental binding of architecture, 

implementation, integration, and deployment 
parameters 
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Technical Results Expected 

n  Standardized, component-based high-assurance 
distributed platform 

n  Compositional assurance of systems from 
component assurance and composition analysis 

n  Framework for certification of systems built on the 
platform supported by extensive automation 

n  Enable application architectures to seamlessly 
span multiple nodes, for scalable determinism 

n  Industrial D-MILS Pilots / Technology Evaluation 
t  Frequentis Voice Services 
t  fortiss Smart Microgrid 
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D-MILS Benefits 

n  A single policy architecture may span multiple D-
MILS nodes expressed in declarative MILS-AADL 

n  Guarantees similar to a single MILS node: isolation, 
information flow control, determinism 

n  Determinism over network could be achieved in 
various ways – D-MILS uses Time-Triggered 
Ethernet 

n  Configure and schedule the network and the 
processors of the nodes coherently 

n  Verify architectural-based properties, develop GSN 
assurance case, synthesize platform configuration, 
using integrated tool chain leveraging existing 
verification technology (nuSMV, OCRA, BIP, AF3) 
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D-MILS Research and Technology 
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Distributed MILS (D-MILS): 
Policy architecture deployment spanning nodes 
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MNS – MILS Networking System    SK – Separation Kernel 
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Distributed MILS Platform –  
MILS nodes with deterministic communication 

TTEthernet 

Enables: Realization of 
deterministic 
distributed MILS 
architectures 

A Distributed MILS Platform: 
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D-MILS Implementation 

n  The policy architecture: 

 

n  …may be deployed on a distributed MILS separation 
kernel with two nodes, MNS and TTEthernet as follows: 
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Demonstrator: fortiss Smart Microgrid 
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Smart Microgrid 
Architectural View  

n  Smart grid sends the current price of energy. 
n  Each prosumer sends a plan indicating how much energy it intends to 

consume and provide during the day. 
n  Smart grid checks whether the grid can support the resulting 

consumption or production. 
n  If the overall plan is not feasible, the prosumers need to modify their 

plans and resend them. 
n  The negotiation continues until the plans are accepted. 
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Smart Microgrid 
Prosumers 
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Demonstrator: Frequentis Voice Services 

cwp... controller working position 
rce...radio control equipment 
r-rce...remote rce 
c-rce...center rce 
swim...system wide information management 
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Summary of Accomplishments to Date 

n  Defined syntax and formal semantics of MILS-AADL dialect 

n  Parser for MILS-AADL 

n  Transformations of MILS-AADL for verification and configuration 

n  Compositional verification framework for MILS-AADL models 

n  Foundations and tool support for compositional GSN assurance cases 

n  Synthesis of MILS component configuration data for target components 

n  Operational D-MILS Platform (distributed LynxSecure separation kernel 
running over TTEthernet) 

n  MILS Platform Configuration Compiler providing synthesis of 
configuration data for target platform components 

n  Two industrial demonstrators in progress: fortiss smart micro grid  and 
Frequentis Voice Services 

D-MILS Project Overview 17 © 2015 D-MILS Project 



Verification Framework 
n  The framework consists of a collection of tools 

integrated to support modeling, validation and 
verification 

n  Modeling language: MILS-AADL 
t  With a formal semantics 

n  Validation with 
t  Simulation 
t  Deadlock checking 
t  Timelock checking 
t  Reachability and other queries in temporal logic 

n  Verification of 
t  Functional requirements 
t  Real-time requirements 
t  Security requirements 
t  Safety requirements 
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Compositional approach 
n  Framework based on a compositional 

approach 
n  System properties are inferred by component 

properties 
n  Advantages: 

t  Efficient reasoning 
t  Delegate proof of application components to the 

provider 
t  Focus on the verification of the architecture 

n  Formalized assumptions: components’ 
expectations on their environment 
t  Assumptions must be satisfied by the environment 
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Starlight example (architecture) 

H 

L 

D U 
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Starlight example (verification) 

n  The system provides some service to the user 
t  The user issues commands that are processed by H or L 

n  Functional requirement: the system returns the 
correct result 

n  Commands labeled with high and low security levels 
t  The user must switch the system to high before issuing 

a high command 
n  Security requirement: the low component must not 

receive high commands 
n  Safety requirement: the system satisfy functional 

and security requirements even if some 
subcomponents fail 

n  System requirements guaranteed by the properties 
of the subcomponents 
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Requirements and properties 
n  Functional requirements: 

t  Invariants 
t  Temporal logic 

n  Real-time and hybrid requirements 
t  Functional requirements with timing constraints 

and taking into account models of physical 
components 

n  Security requirements 
t  Requirements implementing security functions 
t  Non-interference 

n  Safety requirements 
t  Requirements related to safety 
t  Modeled and verified taking into account failures 
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Annotation language 
n  Used to formalize requirements and specify 

verification tasks 
n  Annotations are interpreted by the specific tool 

t  Tool’s specification syntax with references to the MILS-
AADL model 

t  Example: 
{OCRA: CONTRACT st 

 assume: always ({secret(cmd)} implies  
       ((not {switch_to_low} since{switch_to_high})));  
 guarantee: never {secret(low_cmd)}; 

} 
n  Possibility to connect to other tools (e.g., crypto 

protocol verification) 

D-MILS Verification 23 © 2015 D-MILS Project 



Verification issues 
n  MILS-AADL models have infinite-domain 

data variables, continuous-time 
semantics, with safety and security 
concerns 

n  Model checking of reachability for infinite-
state systems is a hard problem 

n  Temporal logic even harder 
n  Safety and security properties harder and 

harder 
n  Major problem of model checking in 

general: scalability 
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Infinite states of MILS-AADL 
n  Semantics of MILS-AADL models is a transition 

system 
n  States given by component modes and assignment 

to data variables 
n  Data types include integer and real 
n  Parameters may include undefined functions (e.g., 

“computation(data)” or “is_secret(data)”) 
n  Standard approaches: 

t  Abstraction 
•  Requires refinement in case of false positive 

t  Automatic abstraction refinement 
•  Typically does not scale 

t  Induction, k-induction, theorem proving 
•  Requires to provide manually lemmas 
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Bad 
states 

IC3 

n  New technique (Bradley 2012) to prove invariants automatically finding 
a suitable inductive invariant. 

n  Currently recognized as the most effective model checking algorithm. 
n  Build an inductive invariant 𝐹 such that 𝐹⊨𝑃 

n  Trace of formulas ​𝐹↓0 =𝐼,   ​𝐹↓1 ,…, ​𝐹↓𝑘  such that: 
t  ​𝐹↓𝑖+1 ⊆ ​𝐹↓𝑖   ( ​𝐹↓𝑖 ⊨​𝐹↓𝑖+1 ) 
t  ​𝐹↓𝑖 ∧𝑇⊨​𝐹↓𝑖+1  
t  ​𝐹↓𝑖 ⊨𝑃 

n  Eventually either counterexample is found or ​𝐹↓𝑖 ≡ ​𝐹↓𝑖+1  proving 𝑃 
n  Mixture of inductive reasoning and search-based techniques 

Initial 
states 

T 
​𝐹↓1  T T 

​𝐹↓𝑘−1  T 
​𝐹↓𝑘  
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IC3 + implicit abstraction 
n  Integrated with predicate abstraction 
n  Only the evolution of a set of predicates is tracked 

in the abstraction, the rest is abstracted away 
n  Implicit abstraction does not compute the abstract 

state space 
n  Definition of predicates embedded in the transition 

relation 
n  Abstraction refinement is fully incremental 

t  Can keep previous trace ​𝐹↓1 ,…, ​𝐹↓𝑘  
t  Abstract transition relation strengthened by additional 

predicates 
n  Implemented in nuXmv 
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Temporal logic 
n  Many requirements formalized into temporal logic (e.g. 

LTL) 
n  No effective procedure to verify LTL over infinite-state 

systems 
n  Standard automata-based approach to 𝑀⊨𝜙: 

t  Reduction to check that a certain condition 𝑓 can be visited 
finitely many times 

n  K-Liveness (Classen & Sorensson 2012):  
t  Key idea: check if 𝑓 can be visited at most 𝑘 times for 

increasing value of 𝑘 
t  Reduced to invariant checking 
t  Very efficient for finite-state systems 
t  Integrated with IC3 for an incremental check of different 𝑘 

n  Implemented in nuXmv 
t  Combined with IC3IA for verification of infinite-state systems 
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K-liveness for timed/hybrid models 
n  Problem for parametric and real-time/hybrid systems 

t  The number of visits of 𝑓 can depend on parameters 
t  𝑓 can be visited an arbitrary number of times in a finite amount of 

time (related to Zeno paths) 

n  K-Zeno: check if there is a bound on the number of times the 
fairness is visited along a diverging sequence of time points 

n  Essential point: use an additional transition system ​𝑍↓𝛽  to 
force a minimum distance 𝛽 between two fair time points 

n  Note: 𝛽 is a symbolic expression over parameters and 
variables. 

n  Key contribution: define 𝛽 so that, if 𝑀⊨𝜙, then there exists 𝑘 
such that 𝑓 can be visited at most 𝑘 times. 

n  Implemented in nuXmv and integrated in HyCOMP for the 
verification of hybrid systems 
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Contract-based reasoning 

n  Assumptions and guarantees expressed 
in temporal logic 

n  Refinement proved generating a set of 
proof obligations in temporal logic 

n  Proof obligations discharged with k-
liveness/k-zeno 

n  Implemented in OCRA 
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Automatic generation of invariants 
n  Previous method requires a manual definition of the 

decomposition 
n  Other methods generate components’ properties automatically 
n  Application for timed systems and timed properties 
n  Observation: 

t  invariant generation methods ignore time synchronization 
t  invariants generated on timed models are too weak 

n  New approach 
t  strengthening the invariants by exploiting time properties  
t  augment atomic components with additional history clocks 
t  generate local invariants for extended components 
t  infer additional history clock constraints from interactions  

n  Method implemented and experimented on classical 
benchmarks 
t  D-Finder prototype for Real-Time BIP 
t  additional heuristics to improve scalability 
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Secure-BIP 

n  An extension of the BIP component 
framework with Information Flow Security 

n  Secure-BIP = BIP + security annotations 
t  security labels on ports and variables 
t  track information flow of interactions and data 

n  Two notions of non-interference studied: 
t  event non-interference wrt interaction flow 
t  data non-interference wrt data flow 

n  Static verification of non-interference 
t  based on sufficient syntactic conditions 
t  implemented in the Secure-BIP tool 
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D-MILS Toolset 

COMPASS 

Configuration 
Compiler 

BIP SMV OCRA 

D-Finder nuXmv 

xSAP 

OCRA 
SMC-BIP 

MILS-
AADL 
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Tool support for algorithms 
n  OCRA/nuXmv covers: 

t  Invariants 
t  LTL 
t  LTL with real-time constraints 
t  LTL for hybrid systems 

n  BIP covers 
t  Deadlock 
t  Transitive Non-interference 

n  Intransitive non-interference will be structurally 
guaranteed by the MILS-AADL model. 

n  Safety addressed with  
t  COMPASS by model extension and applying above 

compositional methods on the extended models 
t  XSAP for fault tree analysis 
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Conclusions 

n  Verification framework based on formal methods 
n  Focused on analysis of architecture 
n  Main concerns: automation, efficiency, 

representation of requirements 
n  Compositional approach formalizing assumptions 

and guarantees of components 
n  Model-based approach, i.e. same model for 

analysis, for platform configuration, for assurance 
case 

n  Evidence of architecture correctness combined with 
arguments on the platform in the assurance case 
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